free living bacterium
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaqi Xu ◽  
Feng Dong ◽  
Meixian Wu ◽  
Rongsheng Tao ◽  
Junjie Yang ◽  
...  

Efficient and novel recombinant protein expression systems can further reduce the production cost of enzymes. Vibrio natriegens is the fastest growing free-living bacterium with a doubling time of less than 10 min, which makes it highly attractive as a protein expression host. Here, 196 pET plasmids with different genes of interest (GOIs) were electroporated into the V. natriegens strain VnDX, which carries an integrated T7 RNA polymerase expression cassette. As a result, 65 and 75% of the tested GOIs obtained soluble expression in V. natriegens and Escherichia coli, respectively, 20 GOIs of which showed better expression in the former. Furthermore, we have adapted a consensus “what to try first” protocol for V. natriegens based on Terrific Broth medium. Six sampled GOIs encoding biocatalysts enzymes thus achieved 50–128% higher catalytic efficiency under the optimized expression conditions. Our study demonstrated V. natriegens as a pET-compatible expression host with a spectrum of highly expressed GOIs distinct from E. coli and an easy-to-use consensus protocol, solving the problem that some GOIs cannot be expressed well in E. coli.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 127
Author(s):  
Jarrett F. Lebov ◽  
Brendan J. M. Bohannan

Symbioses between animals and bacteria are ubiquitous. To better understand these relationships, it is essential to unravel how bacteria evolve to colonize hosts. Previously, we serially passaged the free-living bacterium, Shewanella oneidensis, through the digestive tracts of germ-free larval zebrafish (Danio rerio) to uncover the evolutionary changes involved in the initiation of a novel symbiosis with a vertebrate host. After 20 passages, we discovered an adaptive missense mutation in the mshL gene of the msh pilus operon, which improved host colonization, increased swimming motility, and reduced surface adhesion. In the present study, we determined that this mutation was a loss-of-function mutation and found that it improved zebrafish colonization by augmenting S. oneidensis representation in the water column outside larvae through a reduced association with environmental surfaces. Additionally, we found that strains containing the mshL mutation were able to immigrate into host digestive tracts at higher rates per capita. However, mutant and evolved strains exhibited no evidence of a competitive advantage after colonizing hosts. Our results demonstrate that bacterial behaviors outside the host can play a dominant role in facilitating the onset of novel host associations.


Author(s):  
Jarrett F. Lebov ◽  
Brendan J. M. Bohannan

Symbioses between animals and bacteria are ubiquitous. To better understand these relationships, it is essential to unravel how bacteria evolve to colonize hosts. Previously, we serially passaged the free-living bacterium, Shewanella oneidensis, through the digestive tracts of germ-free larval zebrafish (Danio rerio) to uncover the evolutionary changes involved in the initiation of a novel symbiosis with a vertebrate host. After 20 passages, we discovered an adaptive missense mutation in the mshL gene of the msh pilus operon, which improved host colonization, increased swimming motility, and reduced surface adhesion. In the present study, we have determined that this mutation was a loss-of-function mutation and found that it improved zebrafish colonization by augmenting S. oneidensis representation in the water column outside larvae through a reduced association with environmental surfaces. Additionally, we found that strains containing the mshL mutation were able to immigrate into host digestive tracts at higher rates per capita. However, mutant and evolved strains exhibited no evidence of a competitive advantage after colonizing hosts. Our results demonstrate that bacterial behaviors outside the host can play a dominant role in facilitating the onset of novel host associations.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Jarrett F. Lebov ◽  
Brandon H. Schlomann ◽  
Catherine D. Robinson ◽  
Brendan J. M. Bohannan

ABSTRACT Although animals encounter a plethora of bacterial species throughout their lives, only a subset colonize vertebrate digestive tracts, and these bacteria can profoundly influence the health and development of their animal hosts. However, our understanding of how bacteria initiate symbioses with animal hosts remains underexplored, and this process is central to the assembly and function of gut bacterial communities. Therefore, we used experimental evolution to study a free-living bacterium as it adapts to a novel vertebrate host by serially passaging replicate populations of Shewanella oneidensis through the intestines of larval zebrafish (Danio rerio). After approximately 200 bacterial generations, isolates from evolved populations improved their ability to colonize larval zebrafish during competition against their unpassaged ancestor. Genome sequencing revealed unique sets of mutations in the two evolved isolates exhibiting the highest mean competitive fitness. One isolate exhibited increased swimming motility and decreased biofilm formation compared to the ancestor, and we identified a missense mutation in the mannose-sensitive hemagglutinin pilus operon that is sufficient to increase fitness and reproduce these phenotypes. The second isolate exhibited enhanced swimming motility but unchanged biofilm formation, and here the genetic basis for adaptation is less clear. These parallel enhancements in motility and fitness resemble the behavior of a closely related Shewanella strain previously isolated from larval zebrafish and suggest phenotypic convergence with this isolate. Our results demonstrate that adaptation to the zebrafish gut is complex, with multiple evolutionary pathways capable of improving colonization, but that motility plays an important role during the onset of host association. IMPORTANCE Although animals encounter many bacterial species throughout their lives, only a subset colonize vertebrate digestive tracts, and these bacteria can profoundly influence the health and development of their animal hosts. We used experimental evolution to study a free-living bacterium as it adapts to a novel vertebrate host by serially passaging replicate populations of Shewanella oneidensis through the intestines of larval zebrafish (Danio rerio). Our results demonstrate that adaptation to the zebrafish gut is complex, with multiple evolutionary pathways capable of improving colonization, but that motility plays an important role during the onset of host association.


2020 ◽  
Author(s):  
Jarrett F. Lebov ◽  
Brandon H. Schlomann ◽  
Catherine D. Robinson ◽  
Brendan J. M. Bohannan

AbstractDespite the fact that animals encounter a plethora of bacterial species throughout their lives, only a subset are capable of colonizing vertebrate digestive tracts, and these bacteria can profoundly influence the health and development of their animal hosts. However, it is still unknown how bacteria evolve symbioses with animal hosts, and this process is central to both the assembly and function of gut bacterial communities. Therefore, we used experimental evolution to study a free-living bacterium as it adapts to a novel vertebrate host. We serially passaged replicate populations of Shewanella oneidensis, through the digestive tracts of larval zebrafish (Danio rerio). After only 20 passages, representing approximately 200 bacterial generations, isolates from replicate evolved populations displayed an improved ability to colonize larval zebrafish digestive tracts during competition against their unpassaged ancestor. Upon sequencing the genomes of these evolved isolates, we discovered that the two isolates with the highest mean competitive fitness accumulated unique sets of mutations. We characterized the swimming motility and aggregation behavior of these isolates, as these phenotypes have previously been shown to alter host-microbe interactions. Despite exhibiting different biofilm characteristics, both isolates evolved augmented swimming motility. These enhancements are consistent with expectations based on the behavior of a closely related Shewanella strain previously isolated from the zebrafish digestive tract and suggest that our evolved isolates are pursuing a convergent adaptive trajectory with this zebrafish isolate. In addition, parallel enhancements in swimming motility among isolates from independently adapted populations implicates increased dispersal as an important factor in facilitating the onset of host association. Our results demonstrate that free-living bacteria can rapidly improve their associations with vertebrate hosts.


2019 ◽  
Author(s):  
Xiansha Xiao ◽  
Joost Willemse ◽  
Patrick Voskamp ◽  
Xinmeng Li ◽  
Meindert Lamers ◽  
...  

ABSTRACTIn most bacteria, cell division begins with the polymerization of the GTPase FtsZ at the mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here we show via site-saturated mutagenesis that various amino acid substitutions in the highly conserved SsgB protein result in the production of ectopically placed septa, that sever spores diagonally or along the long axis, perpendicular to the division plane. Ectopic septa were especially prominent when cells expressed SsgB variants with substitutions in residue E120. Biochemical analysis of SsgB variant E120G revealed that its interaction with - and polymerization of - FtsZ had been maintained. The crystal structure of S. coelicolor SsgB was resolved and the position of residue E120 suggests its requirement for maintaining the proper angle of helix α3, thus providing a likely explanation for the aberrant septa formed in SsgB E120 substitution mutants. Taken together, our work presents the first example of longitudinal division in a free living bacterium, which is explained entirely by changes in the FtsZ-recruiting protein SsgB.


2019 ◽  
Author(s):  
Sandra Wiegand ◽  
Mareike Jogler ◽  
Timo Kohn ◽  
Ram Prasad Awal ◽  
Sonja Oberbeckmann ◽  
...  

AbstractOur current understanding of a free-living bacterium - capable of withstanding a variety of environmental stresses-is represented by the image of a peptidoglycan-armored rigid casket. The making and breaking of peptidoglycan greatly determines cell shape. The cytoplasmic membrane follows this shape, pressed towards the cell wall by turgor pressure. Consequently, bacteria are morphologically static organisms, in contrast to eukaryotic cells that can facilitate shape changes. Here we report the discovery of the novel bacterial phylum Saltatorellota, that challenges this concept of a bacterial cell. Members of this phylum can change their shape, are capable of amoeba-like locomotion and trunk-formation through the creation of extensive pseudopodia-like structures. Two independent Saltatorellota cells can fuse, and they employ various forms of cell division from budding to canonical binary fission. Despite their polymorphisms, members of the Saltatorellota do possess a peptidoglycan cell wall. Their genomes encode flagella and type IV pili as well as a bacterial actin homolog, the ‘saltatorellin’. This protein is most similar to MamK, a dynamic filament-forming protein, that aligns and segregates magnetosome organelles via treadmilling. We found saltatorellin to form filaments in both, E. coli and Magnetospirillum gryphiswaldense, leading to the hypothesis that shapeshifting and pseudopodia formation might be driven by treadmilling of saltatorellin.


2017 ◽  
Author(s):  
Matthew A. Campbell ◽  
Piotr Łukasik ◽  
Chris Simon ◽  
John P. McCutcheon

SummaryWhen a free-living bacterium transitions to a host-beneficial endosymbiotic lifestyle, it almost invariably loses a large fraction of its genome [1, 2]. The resulting small genomes often become unusually stable in size, structure, and coding capacity [3-5]. Candidatus Hodgkinia cicadicola (Hodgkinia), a bacterial endosymbiont of cicadas, sometimes exemplifies this genomic stability. The Hodgkinia genome has remained completely co-linear in some cicadas diverged by tens of millions of years [6, 7]. But in the long-lived periodical cicada Magicicada tredecim, the Hodgkinia genome has split into dozens of tiny, gene-sparse genomic circles that sometimes reside in distinct Hodgkinia cells [8]. Previous data suggested that other Magicicada species harbor similarly complex Hodgkinia populations, but the timing, number of origins, and outcomes of the splitting process were unknown. Here, by sequencing Hodgkinia metagenomes from the remaining six Magicicada species and two sister species, we show that all Magicicada species harbor Hodgkinia populations of at least twenty genomic circles each. We find little synteny among the 256 Hodgkinia circles analyzed except between the most closely related species. Individual gene phylogenies show that Hodgkinia first split in the common ancestor of Magicicada and its closest known relatives, but that most splitting has occurred within Magicicada and has given rise to highly variable Hodgkinia gene dosages between cicada species. These data show that Hodgkinia genome degradation has proceeded down different paths in different Magicicada species, and support a model of genomic degradation that is stochastic in outcome and likely nonadaptive for the host. These patterns mirror the genomic instability seen in some mitochondria.


1997 ◽  
Vol 10 (2) ◽  
pp. 320-344 ◽  
Author(s):  
G J Domingue ◽  
H B Woody

A considerable body of experimental and clinical evidence supports the concept that difficult-to-culture and dormant bacteria are involved in latency of infection and that these persistent bacteria may be pathogenic. This review includes details on the diverse forms and functions of individual bacteria and attempts to make this information relevant to the care of patients. A series of experimental studies involving host-bacterium interactions illustrates the probability that most bacteria exposed to a deleterious host environment can assume a form quite different from that of a free-living bacterium. A hypothesis is offered for a kind of reproductive cycle of morphologically aberrant bacteria as a means to relate their diverse tissue forms to each other. Data on the basic biology of persistent bacteria are correlated with expression of disease and particularly the mechanisms of both latency and chronicity that typify certain infections. For example, in certain streptococcal and nocardial infections, it has been clearly established that wall-defective forms can be induced in a suitable host. These organisms can survive and persist in a latent state within the host, and they can cause pathologic responses compatible with disease. A series of cases illustrating idiopathic conditions in which cryptic bacteria have been implicated in the expression of disease is presented. These conditions include nephritis, rheumatic fever, aphthous stomatitis, idiopathic hematuria, Crohn's disease, and mycobacterial infections. By utilizing PCR, previously nonculturable bacilli have been identified in patients with Whipple's disease and bacillary angiomatosis. Koch's postulates may have to be redefined in terms of molecular data when dormant and nonculturable bacteria are implicated as causative agents of mysterious diseases.


Sign in / Sign up

Export Citation Format

Share Document