scholarly journals A Design of a Dual-Band Bandpass Filter Based on Modal Analysis for Modern Communication Systems

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ali Lalbakhsh ◽  
Seyed Morteza Alizadeh ◽  
Amirhossein Ghaderi ◽  
Alireza Golestanifar ◽  
Bahare Mohamadzade ◽  
...  

A dual-band bandpass filter (BPF) composed of a coupling structure and a bent T-shaped resonator loaded by small L-shaped stubs is presented in this paper. The first band of the proposed BPF covers 4.6 to 10.6 GHz, showing 78.9% fractional bandwidth (FBW) at 7.6 GHz, and the second passband is cantered at 11.5 GHz with a FBW of 2.34%. The bent T-shaped resonator generates two transmission zeros (TZs) near the wide passband edges, which are used to tune the bandwidth of the first band, and the L-shaped stubs are used to create and control the narrow passband. The selectivity performance of the BPF is analyzed using the transfer function extracted from the lumped circuit model verified by a detailed even/odd mode analysis. The BPF presents a flat group delay (GD) of 0.45 ns and an insertion loss (IL) less than 0.6 dB in the wide passband and a 0.92 IL in the narrow passband. A prototype of the proposed BPF is fabricated and tested, showing very good agreement between the numerically predicted and measured results.

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 293-300
Author(s):  
Dinghong Jia ◽  
Jianqin Deng ◽  
Yangping Zhao ◽  
Ke Wu

Abstract This work presents an approach to developing dual-mode dual-band substrate integrated waveguide (SIW) bandpass filter based on multilayer process. TE102/TE201 and TE101/TE102 modes are used to feature the two passbands, respectively. To begin with, large range of band location ratios are decided by the effective dimension of the SIW resonator. With reference to the field distribution, independent coupling schemes of the dual-modes are then realized by slots or circular apertures etched on the middle metal layer. It allows to not only introduce a large design freedom of bandwidth but also keep compactness. Finally, source-load and mixed couplings are deployed to produce transmission zeros around the passband in providing a sharp selectivity in the two filters, respectively. The details to independently control the center frequencies and bandwidth of two passbands are also presented. A two-order double-layered and a triple-layered SIW dual-band bandpass filter are prototyped to evaluate the proposed design approach, respectively. Results show a good agreement between simulations and measurements. The proposed filter exhibits flexible design freedom, high selectivity as well as good out-of-band rejection.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Wei-Qiang Pan ◽  
Xiao-Lan Zhao ◽  
Yao Zhang ◽  
Jin-Xu Xu

This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.


2022 ◽  
Vol 9 ◽  
Author(s):  
Nan Wang ◽  
Haokun Wei ◽  
Kun Gao ◽  
Xiting Ruan ◽  
Xiaojian Chen ◽  
...  

A novel dual-band bandpass filter (BPF) is proposed with independently controllable transmission zeros (TZs) which can realize widely tunable stopband bandwidth (BW). The planar microstrip filter consists of a three-degree L-C ladder lowpass filter loaded with two unsymmetrical shorted stubs which are used to produce different TZs. By tuning the parameters of the two unsymmetrical shorted stubs, the TZs can be independently controlled. Therefore, the BPF has independent controllable center frequencies (CFs), passband bandwidths, and stopband bandwidths between adjacent passbands. All the L-C values in the equivalent circuit of the proposed filter are optimized to fulfill the design specifications. For demonstration, a dual-band BPF is designed. The measured results show good agreement with the simulated ones.


Frequenz ◽  
2019 ◽  
Vol 73 (7-8) ◽  
pp. 261-265
Author(s):  
Feng Wei ◽  
Hao-Jie Yue ◽  
Xiao-Wei Shi

Abstract In this paper, a balanced dual-band bandpass filter (BPF) is designed based on microstrip folded stepped impedance split ring resonators (SISRRs) and balanced microstrip/slotline transition structures. The center frequencies and the fractional bandwidths (FBWs) of the two differential-mode (DM) passbands can be tuned by changing the physical lengths of two SISRRs and the gaps between the two resonators, respectively. The balanced microstrip/slotline transition structures can achieve a wideband common-mode (CM) suppression. Moreover, the DM passbands are independent from the CM responses, which significantly simplifies the design procedure. In addition, due to 0-degree feed structure and cross coupling structure, more transmission zeros can be realized, which can improve the passbands selectivity greatly. In order to validate the design strategies, a balanced dual-band BPF centered at 2.47 GHz and 5.21 GHz was fabricated and a good agreement between the simulated and measured results is observed.


Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Lei Chen ◽  
Xiao Yan Li ◽  
Feng Wei

AbstractA compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Liyun Shi ◽  
Jianjun Gao

A planer millimetre-wave dual-band bandpass filter with multitransmission zeros is proposed for 5G application. This filter includes two dual-mode open-loop resonators. The U-shape nonresonating node is employed to generate an extra coupling path. Finally, a dual-band bandpass filter with five transmission zeros is obtained. The filter is fabricated and measured. Good agreement between simulation and measurement is obtained.


2017 ◽  
Vol 9 (3) ◽  
pp. 493-497 ◽  
Author(s):  
Yeganeh Pourasad ◽  
Gholamreza Karimi

A compact dual-band microstrip bandpass filter (BPF) is presented for application at the frequencies 2.4 and 5.84 GHz. The proposed main resonator consists of two L-shaped resonators. To improve the upper-stopband of the proposed filter, modified U-Shaped resonators are accepted. The operation mechanism of the filter is investigated based on proffered equivalent-circuit model and transformation function. The sketched dual-band BPF attends the insertion loss less than 0.1 and 0.4 dB Also the return loss is 26 and 28 dB at 2.4 and 5.84, respectively. This proffered filter structure is proper for Bluetooth and wireless local area networks and other wireless communication systems. An overall good agreement between measured and simulated results is observed.


2016 ◽  
Vol 9 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Bukuru Denis ◽  
Kaijun Song ◽  
Fan Zhang

A compact dual-band bandpass filter using stub-loaded stepped impedance resonator (SLSIR) with cross-slots is presented. The symmetric SLSIR is analyzed using even- and odd-mode techniques. Design equations are derived and they are used to guide the design of the circuits. Two passbands can be easily tuned by cross-slots and open stubs. Transmission zeros among each passbands are created, resulting in high isolation and frequency selectivity. An experimental circuit is fabricated and evaluated to validate the design concept. The fabricated filter is compact with 19.76 × 12.7 mm2. The measurement results are in good agreement with the full-wave simulation results.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 219-227 ◽  
Author(s):  
Abdul Basit ◽  
M. Irfan Khattak

AbstractThis paper presents a modern compact quad-band bandpass filter (BPF) using dual-mode stub loaded half wave (λ/2) resonators, where a couple of directly fed resonators are loaded with two identical inner resonators such that the direct fed resonators will act as feeding structure for the loaded resonators. Based on the proposed stub loaded resonators, a modern filter with seven transmission zeros (TZs) is designed by folding the two identical inner resonators. The proposed design has a symmetrical geometry, therefore even-odd mode analysis is used to predict the resonant frequencies of the passbands. The first and second passbands are obtained through fundamental odd and even modes respectively while the third one is achieved by placing loaded inner resonators in the proposed design. The second even harmonic of the direct fed resonators is utilized to achieve the fourth passband and is controlled by the stubs loaded at the middle of the resonators. The filter is simulated and fabricated for the purpose of validation, wherein a good agreement can be seen in both simulated and experimental results.


2016 ◽  
Vol 9 (5) ◽  
pp. 1029-1035 ◽  
Author(s):  
Jugul Kishor ◽  
Binod K. Kanaujia ◽  
Santanu Dwari ◽  
Ashwani Kumar

Synthesis of differential-mode bandpass filter (BPF) with good common-mode suppression has been described and demonstrated on the basis of ring dielectric resonator (RDR) for high-performance communication system. A RDR with two pairs of feeding lines has been used to excite TE01δ-mode. This unique combination of feeding lines and the ring resonator creates a differential passband. Meanwhile, TM01δ-mode of the DR can also be excited to achieve common-mode rejection in the stopband. Transmission zeros are created in the lower and upper stopband to further improve the selectivity of the proposed BPF. A second-order differential BPF is designed, fabricated and its performance is measured to validate the concept. There is good agreement between simulated and measured results.


Sign in / Sign up

Export Citation Format

Share Document