scholarly journals Micropillar compression of single crystal tungsten carbide, part 2: Lattice rotation axis to identify deformation slip mechanisms

Author(s):  
Vivian Tong ◽  
Helen Jones ◽  
Ken Mingard
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1189
Author(s):  
Yingjue Xiong ◽  
Qinmeng Luan ◽  
Kailun Zheng ◽  
Wei Wang ◽  
Jun Jiang

During plastic deformation, the change of structural states is known to be complicated and indeterminate, even in single crystals. This contributes to some enduring problems like the prediction of deformed texture and the commercial applications of such material. In this work, plane strain compression (PSC) tests were designed and implemented on single crystal pure aluminum to reveal the deformation mechanism. PSC tests were performed at different strain rates under strain control in either one-directional or two-directional compression. The deformed microstructures were analyzed according to the flow curve and the electron back-scattered diffraction (EBSD) mappings. The effects of grain orientation, strain rate, and strain path on the deformation and mechanical response were analyzed. Experimental results revealed that the degree of lattice rotation of one-dimensional compression mildly dependents on cube orientation, but it is profoundly sensitive to the strain rate. For two-dimensional compression, the softening behavior is found to be more pronounced in the case that provides greater dislocations gliding freeness in the first loading. Results presented in this work give new insights into aluminum deformation, which provides theoretical support for forming and manufacturing of aluminum.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 302
Author(s):  
Otto E. O. Zeman ◽  
Viktoria Kainz ◽  
Thomas Bräuniger

The electronic surroundings of phosphorus and lithium atoms in the ionic conductor lithium dihydrogen phosphate (LDP) have been studied by single-crystal nuclear magnetic resonance (NMR) spectroscopy at room temperature. From orientation-dependent NMR spectra of a large homegrown LDP single crystal, the full 31P chemical shift (CS) and 7Li quadrupole coupling (QC) tensor was determined, using a global fit over three rotation patterns. The resulting CS tensor is characterized by its three eigenvalues: δ 11 P A S = ( 67.0 ± 0.6 ) ppm, δ 22 P A S = ( 13.9 ± 1.5 ) ppm, and δ 33 P A S = ( − 78.7 ± 0.9 ) ppm. All eigenvalues have also been verified by magic-angle spinning NMR on a polycrystalline sample, using Herzfeld–Berger analysis of the rotational side band pattern. The resulting 7Li QC tensor is characterized by its quadrupolar coupling constant χ = Q 33 P A S = ( − 71 ± 1 ) kHz and the two eigenvalues Q 11 P A S = ( 22.3 ± 0.9 ) kHz, and Q 22 P A S = ( 48.4 ± 0.8 ) kHz. The initially unknown orientation of the mounted crystal, expressed by the orientation of the rotation axis in the orthorhombic crystal frame, was included in the global data fit as well, thus obtaining it from NMR data only.


2004 ◽  
Vol 71 (5) ◽  
pp. 713-723 ◽  
Author(s):  
Hongqiang Chen ◽  
Jeffrey W. Kysar ◽  
Y. Lawrence Yao

Electron backscatter diffraction (EBSD) is used to investigate crystal lattice rotation caused by plastic deformation during high-strain rate laser shock peening in single crystal aluminum and copper sample on 110¯ and (001) surfaces. New experimental methodologies are employed which enable measurement of the in-plane lattice rotation under approximate plane-strain conditions. Crystal lattice rotation on and below the microscale laser shock peened sample surface was measured and compared with the simulation result obtained from FEM analysis, which account for single crystal plasticity. The lattice rotation measurements directly complement measurements of residual strain/stress with X-ray micro-diffraction using synchrotron light source and it also gives an indication of the extent of the plastic deformation induced by the microscale laser shock peening.


2015 ◽  
Vol 71 (11) ◽  
pp. 1325-1327 ◽  
Author(s):  
Maxim Bykov ◽  
Elena Bykova ◽  
Vadim Dyadkin ◽  
Dominik Baumann ◽  
Wolfgang Schnick ◽  
...  

Hitherto, phosphorus oxonitride (PON) could not be obtained in the form of single crystals and only powder diffraction experiments were feasible for structure studies. In the present work we have synthesized two polymorphs of phosphorus oxonitride, cristobalite-type (cri-PON) and coesite-type (coe-PON), in the form of single crystals and reinvestigated their crystal structures by means of in house and synchrotron single-crystal X-ray diffraction. The crystal structures ofcri-PON andcoe-PON are built from PO2N2tetrahedral units, each with a statistical distribution of oxygen and nitrogen atoms. The crystal structure of thecoe-PON phase has the space groupC2/cwith seven atomic sites in the asymmetric unit [two P and three (N,O) sites on general positions, one (N,O) site on an inversion centre and one (N,O) site on a twofold rotation axis], while thecri-PON phase possesses tetragonalI-42dsymmetry with two independent atoms in the asymmetric unit [the P atom on a fourfold inversion axis and the (N,O) site on a twofold rotation axis]. In comparison with previous structure determinations from powder data, all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles.


Author(s):  
F. P. E. Dunne ◽  
R. Kiwanuka ◽  
A. J. Wilkinson

A gradient-enhanced crystal plasticity model is presented that explicitly accounts for the evolution of the densities of geometrically necessary dislocations (GNDs) on individual slip systems of deforming crystals. The GND densities are fully coupled with the crystal slip rule. Application of the model to two distinct and technologically important crystal types, namely hcp Ti and ccp Ni, is given. For the hcp crystals, slip is permitted with a -type slip directions on basal, prismatic and pyramidal planes and c + a -type slip directions on pyramidal planes. First, a single crystal under four-point bending is simulated as the uniform strain gradient expected in the central span provides a good validation of the code. Then, uniaxial deformation of a model near- α Ti polycrystal has been analysed. The resulting distributions of GND densities that develop on the various slip system types have been compared with independent experimental observations. The model predicts that GND density on the c + a systems is approximately an order of magnitude lower than that for a -type systems in agreement with experiment. For the ccp case, slip is considered to take place on the <110>{111} slip systems. Thermal loading of a single-crystal nickel alloy sample containing carbide particles of size approximately 30 μm has been analysed. Detailed comparisons are presented between model predictions and results of high-resolution electron backscatter diffraction (EBSD) measurements of the micro-deformations, lattice rotations, curvatures and GND densities local to the nickel–carbide interface. Qualitatively, good agreement is achieved between the coupled and decoupled model elastic strains with the EBSD measurements, but lattice rotations and GND densities are quantitatively well predicted by the coupled crystal model but are less well captured by the decoupled model. The GND coupling is found to lead to reduced lattice rotations and plastic strains in the region of highest heterogeneity close to the Ni matrix/particle interface, which is in agreement with the experimental measurements. The results presented provide objective evidence of the effectiveness of gradient-enhanced crystal plasticity finite element analysis and demonstrate that GND coupling is required in order to capture strains and lattice rotations in regions of high heterogeneity.


1978 ◽  
Vol 21 (85) ◽  
pp. 661-668 ◽  
Author(s):  
Katutosi Tusima

Abstract Measurements were made of the kinetic friction which occurs when a tungsten carbide ball slides in various directions on the surface of a single crystal of ice, the track width produced on the surface was also measured. Anisotropies were detected in both the friction coefficient and the track width. The track width φ was at a maximum when the ball was slid normal to the basal plane and a minimum when it was moving parallel to (0001) in the temperature range —5 to —30°C. Although the friction coefficient was at a minimum when slid normal to (0001) and maximum in parallel to (0001) at temperatures of —19°C and below, this relation was found to be reversed at temperatures of —10°C and above. Anisotropy in track width can be explained in terms of the amount by which a slip system contributes to deformation in a specimen. However, our understanding of frictional anisotropy calls for knowledge of the ploughing strength p defined by the adhesion theory of friction. It was found that p reached a maximum in parallel to (0001) and a minimum normal to (0001) and that the frictional anisotropy on (0001) was influenced by the value . A remarkable frictional anisotropy was also observed on the surface inclined to the basal plane at 30°; the maximum friction coefficient was twice the minimum, whereas the maximum track width was only 1.3 times the minimum.


1999 ◽  
Vol 31 (4) ◽  
pp. 249-261 ◽  
Author(s):  
S. To ◽  
W.B. Lee ◽  
C.Y. Chan

The orientation changes in the crystallographic textures of a diamond turned aluminium single crystal have been investigated. The X-ray pole figures were collected at various locations on the surfaces turned at high speed. In the central part of the turned surfaces, the pole figures revealed the presence of a thin deformed layer. Four sets of slip systems were found to operate to a very similar extent. However, as the distance from the centre increased, the operation of these four sets of slip systems varied and the textural changes were found to be increasingly affected by the cutting velocity. In a separate grooving experiment, electron back-scatter diffraction (EBSD) patterns were collected at various locations along the bottom part of the groove. These patterns revealed a lattice rotation on the machined surface which was induced by shearing along the cutting direction.


Sign in / Sign up

Export Citation Format

Share Document