scholarly journals Inferred basal friction and mass flux affected by crystal-orientation fabrics

2021 ◽  
pp. 1-17
Author(s):  
Nicholas M. Rathmann ◽  
David A. Lilien

We investigate the errors caused by neglecting the crystal-orientation fabric when inferring the basal friction coefficient field, and whether such errors can be alleviated by inferring an isotropic enhancement factor field to compensate for missing fabric information. We calculate the steady states that arise from ice flowing over a sticky spot and a bedrock bump using a vertical-slab numerical ice-flow model, consisting of a Weertman sliding law and the anisotropic Johnson flow law, coupled to a spectral fabric model of lattice rotation and dynamic recrystallisation. Given the steady or transient states as input for a canonical adjoint-based inversion, we find that Glen's isotropic flow law cannot necessarily be used to infer the true basal drag or friction coefficient field, which are obscured by the orientation fabric, thus potentially affecting vertically integrated mass fluxes. By inverting for an equivalent isotropic enhancement factor, a more accurate mass flux can be recovered, suggesting that joint inversions for basal friction and the isotropic flow-rate factor may be able to compensate for mechanical anisotropies caused by the fabric. Thus, in addition to other sources of rheological uncertainty, fabric might complicate attempts to relate subglacial conditions to basal properties inferred from an inversion relying on Glen's law.

2018 ◽  
Vol 26 (01) ◽  
pp. 1850005 ◽  
Author(s):  
Nae-Hyun Kim ◽  
Hyung-Ho Gook ◽  
Byung-Moo Lee

R-404A condensation heat transfer and pressure drop data are provided for 7.0[Formula: see text]mm O.D. smooth and microfin tubes. Tests were conducted for a range of mass fluxes (from 80 to 200[Formula: see text]kg/m2s) and quality (from 0.2 to 0.8). The heat flux was 6[Formula: see text]kW/m2 and saturation temperature was 45[Formula: see text]C. It was found that both the heat transfer enhancement factor and the pressure drop penalty factor increase as mass flux increases. The range of pressure drop penalty factor (0.99–1.27) was smaller than that of heat transfer enhancement factor (1.21–1.96). Smooth tube heat transfer coefficients and pressure drops are reasonably predicted by Shah [An improved and extended general correlation for heat transfer during condensation in plain tubes, Int. J. HVAC&R Res. 15 (2009) 889–913] and Jung and Radermacher [Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants, Int. J. Heat Mass Transfer 32 (1989) 2435–2446] correlation, respectively. For the microfin tube, however, all the existing correlations do not adequately predict the present data. Poor predictions may be attributed to the lack of R-404A and low mass flux data in their database.


2021 ◽  
Vol 15 (7) ◽  
pp. 3229-3253
Author(s):  
Gunter R. Leguy ◽  
William H. Lipscomb ◽  
Xylar S. Asay-Davis

Abstract. Ice sheet models differ in their numerical treatment of dynamical processes. Simulations of marine-based ice are sensitive to the choice of Stokes flow approximation and basal friction law and to the treatment of stresses and melt rates near the grounding line. We study the effects of these numerical choices on marine ice sheet dynamics in the Community Ice Sheet Model (CISM). In the framework of the Marine Ice Sheet Model Intercomparison Project 3d (MISMIP3d), we show that a depth-integrated, higher-order solver gives results similar to a 3D (Blatter–Pattyn) solver. We confirm that using a grounding line parameterization to approximate stresses in the grounding zone leads to accurate representation of ice sheet flow with a resolution of ∼2 km, as opposed to ∼0.5 km without the parameterization. In the MISMIP+ experimental framework, we compare different treatments of sub-shelf melting near the grounding line. In contrast to recent studies arguing that melting should not be applied in partly grounded cells, it is usually beneficial in CISM simulations to apply some melting in these cells. This suggests that the optimal treatment of melting near the grounding line can depend on ice sheet geometry, forcing, or model numerics. In both experimental frameworks, ice flow is sensitive to the choice of basal friction law. To study this sensitivity, we evaluate friction laws that vary the connectivity between the basal hydrological system and the ocean near the grounding line. CISM yields accurate results in steady-state and perturbation experiments at a resolution of ∼2 km (arguably 4 km) when the connectivity is low or moderate and ∼1 km (arguably 2 km) when the connectivity is strong.


2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2020 ◽  
Author(s):  
Carolyn Boulton ◽  
Marcel Mizera ◽  
Maartje Hamers ◽  
Inigo Müller ◽  
Martin Ziegler ◽  
...  

<p>The Hungaroa Fault Zone (HFZ), an inactive thrust fault along the Hikurangi Subduction Margin, accommodated large displacements (~4–10 km) at the onset of subduction in the early Miocene. Within a 40 m-wide high-strain fault core, calcareous mudstones and marls display evidence for mixed-mode viscous flow and brittle fracture, including: discrete faults; extensional veins containing stretched calcite fibers; shear veins with calcite slickenfibers; calcite foliation-boudinage structures; calcite pressure fringes; dark dissolution seams; stylolites; embayed calcite grains; and an anastomosing phyllosilicate foliation.</p><p>Multiple observations indicate a heterogeneous stress state within the fault core. Detailed optical and electron backscatter diffraction-based texture analysis of syntectonic calcite veins and isoclinally folded limestone layers within the fault core reveal that calcite grains have experienced intracrystalline plasticity and interface mobility, and local subgrain development and dynamic recrystallisation. The recrystallized grain size in two calcite veins of 6.0±3.9 µm (n=1339; 1SD; HFZ-H4-5.2m_A;) and 7.2±4.2µm (n=406; 1SD; HFZ-H4-19.9m) indicate high differential stresses (~76–134 MPa). Hydrothermal friction experiments on a foliated, calcareous mudstone yield a friction coefficient of μ≈0.35. Using this friction coefficient in the Mohr-Coulomb failure criterion yields a maximum differential stress of 55 MPa at 4 km depth, assuming a minimum principal stress equal to the vertical stress, an average sediment density of 2350 kg/m<sup>3</sup>, and hydrostatic pore fluid pressure. Interestingly, calcareous microfossils within the foliated mudstone matrix are undeformed. Moreover, calcite veins are oriented both parallel to and highly oblique to the foliation, indicating spatial and/or temporal variations in the maximum principle stress azimuth.</p><p>To further constrain HFZ deformation conditions, clumped isotope geothermometry was performed on six syntectonic calcite veins, yielding formation temperatures of 79.3±19.9°C (95% confidence interval). These temperatures are well below those at which dynamic recrystallisation of calcite is anticipated and exclude shear heating and the migration of hotter fluids as an explanation for dynamic recrystallisation of calcite at shallow crustal levels (<5 km depth).</p><p>Our results indicate that: (1) stresses are spatiotemporally heterogeneous in crustal fault zones containing mixtures of competent and incompetent minerals; (2) heterogeneous deformation mechanisms, including frictional sliding, pressure solution, dynamic recrystallization, and mixed-mode fracturing accommodate slip in shallow crustal fault zones; and (3) brittle fractures play a pivotal role in fault zone deformation by providing fluid pathways that promote fluid-enhanced recovery and dynamic recrystallisation in the deforming calcite at remarkably low temperatures. Together, field geology, microscopy, and clumped isotope geothermometry provide a powerful method for constraining the multiscale slip behavior of large-displacement fault zones.</p>


2009 ◽  
Vol 66 (3) ◽  
pp. 627-646 ◽  
Author(s):  
L. E. Ott ◽  
J. Bacmeister ◽  
S. Pawson ◽  
K. Pickering ◽  
G. Stenchikov ◽  
...  

Abstract Convection strongly influences the distribution of atmospheric trace gases. General circulation models (GCMs) use convective mass fluxes calculated by parameterizations to transport gases, but the results are difficult to compare with trace gas observations because of differences in scale. The high resolution of cloud-resolving models (CRMs) facilitates direct comparison with aircraft observations. Averaged over a sufficient area, CRM results yield a validated product directly comparable to output from a single global model grid column. This study presents comparisons of vertical profiles of convective mass flux and trace gas mixing ratios derived from CRM and single column model (SCM) simulations of storms observed during three field campaigns. In all three cases, SCM simulations underpredicted convective mass flux relative to CRM simulations. As a result, the SCM simulations produced lower trace gas mixing ratios in the upper troposphere in two of the three storms than did the CRM simulations. The impact of parameter sensitivity in the moist physics schemes employed in the SCM has also been examined. Statistical techniques identified the most significant parameters influencing convective transport. Convective mass fluxes are shown to be strongly dependent on chosen parameter values. Results show that altered parameter settings can substantially improve the comparison between SCM and CRM convective mass flux. Upper tropospheric trace gas mixing ratios were also improved in two storms. In the remaining storm, the SCM representation of CO2 was not improved because of differences in entrainment and detrainment levels in the CRM and SCM simulations.


2021 ◽  
Author(s):  
Gunter Leguy ◽  
William Lipscomb ◽  
Xylar Asay-Davis

<p>Ice sheet models differ in their numerical treatment of dynamical processes. Simulations of marine-based ice are sensitive to the choice of Stokes flow approximation and basal friction law, and to the treatment of stresses and melt rates near the grounding line. We present the effects of these numerical choices on marine ice-sheet dynamics in the Community Ice Sheet Model (CISM). In the experimental framework of the Marine Ice Sheet Model Intercomparison Project (MISMIP+), we compare different treatments of sub-shelf melting near the grounding line. In contrast to recent studies arguing that melting should not be applied in partly grounded cells, it is usually beneficial in CISM simulations to apply some melting in these cells. This suggests that the optimal treatment of melting near the grounding line can depend on ice-sheet geometry, forcing, or model numerics. In the MISMIP+ framework, the ice flow is also sensitive to the choice of basal friction law. To study this sensitivity, we evaluate friction laws that vary the connectivity between the basal hydrological system and the ocean near the grounding line. CISM yields accurate results in steady-state and perturbation experiments at a resolution of ∼2 km (arguably 4 km) when the connectivity is low or moderate, and ∼1 km (arguably 2 km) when the connectivity is strong.</p>


2019 ◽  
Vol 100 (1) ◽  
pp. 313-327
Author(s):  
Dan Yu ◽  
Xinghui Huang ◽  
Zhengyuan Li

Abstract A catastrophic landslide struck the Xiaoba village in Fuquan, Guizhou, southwestern China at about 8:30 p.m. (Beijing Time, UTC + 8) on August 27, 2014. The landslide and induced impulse water waves destroyed two villages and killed 23 persons. By reprocessing seismic signals from a seismic network deployed in the surrounding area of the landslide, we recognized the event from low-frequency seismic signals and subsequently performed a long-period seismic waveform inversion to obtain its force–time history. The inversion results reveal that the maximum force for the landslide is 5 × 109 N, and the duration of the landslide is 38.4 s. The landslide reached its maximum velocity of 12.4 m/s at 13.2 s after its initiation, and the mass center plugged into the quarry at 24.2 s. Based on the inversion results, we estimated basal friction of the landslide. We found the friction coefficient rapidly reduces to a relatively steady-state value of ~ 0.4 at a steady-state distance of 35 m and subsequently reduces in a near-linear manner that satisfies the empirical formula $$ \mu = - 1.4d + 0.44 $$μ=-1.4d+0.44, where $$ d $$d is sliding distance in km. The reduction in friction revealed by the formula is compatible with the finding of previous studies for landslides of similar volume in landslide acceleration stage. However, our result does not make it possible for the friction coefficient to increase again in landslide deceleration stage that a velocity-dependent friction law would allow. The friction variation patterns can be used to constrain input parameters in numerical landslide simulation, which can predicate runout distance and deposit areas for massive landslides to carry out landslide hazard assessment.


2018 ◽  
Vol 12 (3) ◽  
pp. 1047-1067 ◽  
Author(s):  
Felicity S. Graham ◽  
Mathieu Morlighem ◽  
Roland C. Warner ◽  
Adam Treverrow

Abstract. The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period – sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction – both scenarios dominated at depth by bed-parallel shear – the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.


2020 ◽  
Vol 77 (3) ◽  
pp. 981-1000
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun ◽  
Byeong-Gwon Song

Abstract Contributions of convective gravity waves (CGWs) and orographic gravity waves (OGWs) to the Brewer–Dobson circulation (BDC) are examined and compared to those from resolved waves. OGW drag (OGWD) is provided by NCEP Climate Forecast System Reanalysis (CFSR), while CGW drag (CGWD) is obtained from an offline calculation of a physically based CGW parameterization with convective heating and background data provided by CFSR. CGWD contributes to the shallow branch of the BDC regardless of the season, while OGWD contributes to both the shallow and deep branches except for the summertime, when OGWs hardly propagate into the stratosphere. At 70 hPa, the annual-mean tropical upward mass fluxes from Eliassen–Palm flux divergence (EPD), OGWD, and CGWD are 68%, 7%, and 4% of the total mass flux, respectively. The tropical upward mass flux at 70 hPa shows an increasing trend during the time period from 1979 to 1998, with 28%, 18%, and 6% of the trend driven by EPD, OGWD, and CGWD, respectively. The width of the turnaround latitudes tends to narrow for the streamfunctions induced by OGWD and CGWD but tends to widen for that induced by EPD. The contributions of GWD from MERRA (MERRA-2) to the climatology and long-term trend of the BDC are 7% (7%) and 13% (4%), respectively, somewhat smaller than the contributions of CGWD plus OGWD, which are estimated from CFSR to be 12% and 20%, respectively.


Author(s):  
Hyun Jin Kim ◽  
Leon Liebenberg ◽  
Anthony M. Jacobi

An experimental investigation was performed to study the heat transfer and pressure drop characteristics of refrigerant R-134a boiling in a chevron-patterned brazed plate heat exchanger (BPHE) at low mass flux. The heat transfer coefficient and pressure drop characteristics are analyzed in relation to varying mass flux (30–50 kgm−2s−1), saturation pressure (675 kPa and 833 kPa), heat flux (0.8 and 2.5 kWm−2), and vapor quality (0.1–0.9). The two-phase pressure drop shows a strong dependence on mass flux and significant saturation temperature drop at high mass flux. The two-phase heat transfer coefficient was both strongly dependent on heat flux (at vapor qualities below 0.4) and on mass flux (at vapor qualities above 0.4). There was also apparent dryout, as depicted by decreased heat transfer at high vapor qualities. These observations suggest that both nucleate and convective boiling mechanisms prevailed. Existing transition correlations however suggest that the experimental data is rather convection-dominant and not a mix of convection and nucleate boiling. The experimental data further strongly suggest the prevalence of both macrochannel and minichannel type flows. Several acknowledged semi-empirical transition criteria were employed to verify our observations. These criteria mostly support our observations that R-134a evaporating at low mass fluxes in a BPHE with a hydraulic diameter of 3.4 mm, has heat transfer and pressure drop characteristics typically indicative of macrochannel as well as minichannel flows. Disagreement however exists with accepted correlations regarding the prevalence of convective or nucleate boiling.


Sign in / Sign up

Export Citation Format

Share Document