olfactory proteins
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Zhende Yang ◽  
Xiuhao Yang ◽  
Hongxuan Ma ◽  
Xiumei Liu ◽  
...  

Endoclita signifier Walker (Lepidoptera: Hepialidae), a polyphagous insect, has become a new wood-boring pest in Eucalyptus plantations in southern China since 2007, which represents a typical example of native insect adaptation to an exotic host. After the third instar, larvae move from soil to standing trees and damage the plants with a wormhole. Although females disperse to lay eggs, larvae can accurately find eucalyptus in a mingled forest of eight species, which leads us to hypothesize that the larval olfactory system contributes to its host selection. Herein, we investigated the transcriptomes of the head and tegument of E. signifer larvae and explored the expression profiles of olfactory proteins. We identified 15 odorant-binding proteins (OBPs), including seven general OBPs (GOPBs), six chemosensory proteins (CSPs), two odorant receptors (ORs), one gustatory receptor (GR), 14 ionotropic receptors (IRs), and one sensory neuron membrane protein (SNMP). Expression profiles indicated that all olfactory proteins, except for EsigCSP1, were expressed in the head, and most were also detected in non-olfactory tissues, especially thorax tegument. Furthermore, EsigOBP2, EsigOBP8, EsigGOBP1, EsigGOBP2, EsigGOBP5, EsigCSP3, EsigCSP5, and EsigOR1 were expressed most strongly in the head; moreover, EsigCSP3 expressed abundantly in the head. EsigGR1 exhibited the highest expression among all tissues. Besides phylogenetic analysis shows that EsigGOBP7 probably is the pheromone-binding protein (PBP) of E. signifier. This study provides the molecular basis for future study of chemosensation in E. signifier larvae. EsigCSP3 and EsigGR1, which have unique expression patterns, might be factors that govern the host choice of larvae and worth further exploration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ricardo Godoy ◽  
Juan Machuca ◽  
Herbert Venthur ◽  
Andrés Quiroz ◽  
Ana Mutis

Lepidoptera are used as a model for the study of insect olfactory proteins. Among them, odorant degrading enzymes (ODEs), that degrade odorant molecules to maintain the sensitivity of antennae, have received less attention. In particular, antennal esterases (AEs; responsible for ester degradation) are crucial for intraspecific communication in Lepidoptera. Currently, transcriptomic and genomic studies have provided AEs in several species. However, efforts in gene annotation, classification, and functional assignment are still lacking. Therefore, we propose to combine evidence at evolutionary, structural, and functional level to update ODEs as well as key information into an easier classification, particularly of AEs. Finally, the kinetic parameters for putative inhibition of ODEs are discussed in terms of its role in future integrated pest management (IPM) strategies.


2020 ◽  
Vol 21 (17) ◽  
pp. 6371
Author(s):  
Mercedes Lachén-Montes ◽  
Naroa Mendizuri ◽  
Domitille Schvartz ◽  
Joaquín Fernández-Irigoyen ◽  
Jean Charles Sánchez ◽  
...  

Olfactory dysfunction is one of the prodromal symptoms in dementia with Lewy bodies (DLB). However, the molecular pathogenesis associated with decreased smell function remains largely undeciphered. We generated quantitative proteome maps to detect molecular alterations in olfactory bulbs (OB) derived from DLB subjects compared to neurologically intact controls. A total of 3214 olfactory proteins were quantified, and 99 proteins showed significant alterations in DLB cases. Protein interaction networks disrupted in DLB indicated an imbalance in translation and the synaptic vesicle cycle. These alterations were accompanied by alterations in AKT/MAPK/SEK1/p38 MAPK signaling pathways that showed a distinct expression profile across the OB–olfactory tract (OT) axis. Taken together, our data partially reflect the missing links in the biochemical understanding of olfactory dysfunction in DLB.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8902
Author(s):  
Dongbai Wang ◽  
Jing Tao ◽  
Pengfei Lu ◽  
Youqing Luo ◽  
Ping Hu

Background The tiny casebearer moth Coleophora obducta, an important defoliator of Larix spp., is a major threat to ecological security in north China. Studies have shown that C. obducta is strongly specific to host plants; it is unable complete its life cycle without Larix spp. The sex pheromones of C. obducta Z5-10:OH have been elucidated; and eight types of antennae sensilla, have been detected, indicating that an exploration of its olfactory proteins is necessary, due to the general lack of information on this topic. Methods We investigated the whole body transcriptome of C. obducta, performed a phylogenetic analysis of its olfactory proteins and produced expression profiles of three pheromone-binding proteins (CobdPBPs) by qRT–PCR. Results We identified 16 odorant binding proteins, 14 chemosensory proteins, three sensory neuron membrane proteins, six odorant degrading enzymes, five antennal esterases, 13 odorant receptors, seven ionotropic receptors and 10 gustatory receptors, including three PBPs and one odorant co-receptor. Additionally, three putative pheromone receptors, two bitter gustatory receptors and five functional ionotropic receptors were found by phylogenetic analysis. The expression profiles of three PBPs in males and females showed that all of them exhibited male-specific expression and two were expressed at significantly higher levels in males. These data provide a molecular foundation from which to explore the olfactory recognition process and may be useful in the development of a new integrated pest management strategy targeting olfactory recognition of C. obducta.


Author(s):  
Huiyuan Yang ◽  
Shuoying Ning ◽  
Xiao Sun ◽  
Chuan Chen ◽  
Lingxiao Liu ◽  
...  

Abstract Sensory neuron membrane proteins (SNMPs) in insects are critical peripheral olfactory proteins and act as markers for pheromone detection. However, the SNMPs for onion maggot, Delia antiqua Meigen, a world-wide subterranean pest, have not been previously characterized. In this study, we first report the cloning and characterization of two novel SNMPs from D. antiqua, DantSNMP1 and DantSNMP2. Sequence alignment and phylogenetic analysis showed that DantSNMP1 and DantSNMP2 are very similar to the previously reported SNMP1 and SNMP2 isolated from other dipteran insects but they share low identity with each other. Further expression profile experiments showed that DantSNMP1 is antenna-specific, while DantSNMP2 is expressed both in antennae and nonantennal tissues. Immunocytochemical localization experiments showed that DantSNMP1 was expressed only in sensilla trichodae, which suggests that this protein is involved in pheromone reception in insect olfaction.


2019 ◽  
Vol 7 ◽  
Author(s):  
Darren J. Parker ◽  
Jelisaveta Djordjevic ◽  
Tanja Schwander

Sign in / Sign up

Export Citation Format

Share Document