eukaryotic microbe
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Heru Kusdianto ◽  
Chitrasak Kullapanich ◽  
Matanee Palasuk ◽  
Suppakarn Jandang ◽  
Kobchai Pattaragulwanit ◽  
...  

Global warming has caused elevated seawater temperature and coral bleaching, including events on shallow reefs in the upper Gulf of Thailand (uGoT). Previous studies have reported an association between loss of zooxanthellae and coral bleaching. However, studies on the microbial diversity of prokaryotes and eukaryotes (microbiome) as coral holobionts are also important and this information is still limited in the uGoT. To address this shortcoming, this report provided baseline information on the prokaryotic (bacteria and archaea) and eukaryotic microbes of healthy and bleached colonies of four prevalent corals Acropora humilis, Acropora millepora, Platygyra sinensis, and Porites lutea and surrounding seawater and sediments, using 16S and 18S rRNA gene next-generation sequencing. Both prokaryotic and eukaryotic microbes showed isolated community profiles among sample types (corals, sediment, and seawater) (ANOSIM: P < 0.001, R = 0.51 for prokaryotic profiles and P < 0.001, R = 0.985 for eukaryotic microbe profiles). Among coral species, P. sinensis showed the most diverse prokaryotic community compared with the others (ANOSIM: P < 0.001, R = 0.636), and P. lutea showed the most diverse eukaryotic microbes (P = 0.014, R = 0.346). Healthy and bleached corals had some different microbiomes in species and their prevalences. For instance, the significant increase of Alphaproteobacteria in P. sinensis resulted in reduced prokaryotic community evenness and altered potential metabolic profiles (i.e., increased amino acid metabolism and genetic information processing and transcription, but decreased prokaryotic functions in cell motility, signaling, and transduction). For eukaryotic microbes, the loss of the algal Symbiodinium (colloquially known as zooxanthellae) in bleached corals such as P. lutea resulted in increased Chromista and Protista and, hence, clearly distinct eukaryotic microbe (including fungi) communities in healthy vs. bleached colonies of corals. Bleached corals were enriched in bacterial pathogens (e.g., Acinetobacter, Helicobacter, Malassesia, and Aspergillus) and decreased coral-beneficial prokaryotic and eukaryotic microbes (e.g., Rhizobiales and Symbiodinium). Additionally, this study identified microbiome species in bleached P. lutea that might help bleaching recovery (e.g., high abundance of Rhizobiales, Oceanospirillales, Flavobacteriales, and Alteromonadales). Overall, our coral-associated microbiome analyses identified altered diversity patterns of bacteria, archaea, fungi, and eukaryotic microbes between healthy and bleached coral species that are prevalent in the uGoT. This knowledge supports our ongoing efforts to manipulate microbial diversity as a means of reducing the negative impacts of thermal bleaching events in corals inhabiting the uGoT.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 743 ◽  
Author(s):  
Amber R. Matha ◽  
Xiaorong Lin

The mitochondrion is a vital organelle in most eukaryotic cells. It contains its own DNA which differs from nuclear DNA, since it is often inherited from only one parent during sexual reproduction. In anisogamous mammals, this is largely due to the fact that the oocyte has over 1000 times more copies of mitochondrial DNA than the sperm. However, in the isogamous fungus Cryptococcus neoformans, uniparental mitochondrial inheritance (UMI) still occurs during sexual reproduction. It is proposed that UMI might have evolved in the last common ancestor of eukaryotes. Thus, understanding the fundamental process of UMI in lower eukaryotes may give insights into how the process might have evolved in eukaryotic ancestors. In this review, we discuss the current knowledge regarding the cellular features as well as the molecular underpinnings of UMI in Cryptococcus during the mating process, and open questions that need to be answered to solve the mystery of UMI in this eukaryotic microbe.


2020 ◽  
Vol 58 (3) ◽  
pp. 321-326 ◽  
Author(s):  
Moon-Ju Kim ◽  
Eun Jeong Won ◽  
Soo Hyun Kim ◽  
Jong Hee Shin ◽  
Jong-Yil Chai

Blastocystis has recently been recognized as the most common eukaryotic microbe of the human gut. We investigated the prevalence of Blastocystis and their subtypes in diarrheal and non-diarrheal groups and the associated clinical parameters. A total of 324 stool samples were obtained from 196 diarrheal and 128 non-diarrheal subjects. Blastocystis subtypes were determined by sequencing the small subunit ribosomal DNA (SSU rRNA) gene. Demographic, clinical and laboratory data were collected and analyzed by diarrhea and Blastocystis status. The overall rate of Blastocystis positivity was 9.0% (29/324) but was significantly higher in the non-diarrheal group (18.0% vs. 3.1%, P<0.0001). Of the 6 Blastocystis-positive diarrheal patients, 3 (50.0%), none (0.0%), 2 (33.3%), and 1 (16.7%) were infected with subtypes ST1, ST2, ST3, and multiple subtypes, respectively. Of the 23 Blastocystis-positive non-diarrheal patients, 4 (17.4%), 1 (4.3%), and 18 (78.3%) were infected with subtypes ST1, ST2, and ST3, respectively. Blastocystis was less common in the diarrheal than the non-diarrheal group (odds ratio, 0.144; 95% confidence interval, 0.057–0.365, P<0.001). Of the 3 subtypes, ST3 was more frequently observed in the non-diarrheal than diarrheal group (78.3% vs. 33.3%, P=0.0341). Collectively, Blastocystis was found in both the diarrheal and non-diarrheal groups and ST3 was the most common subtype in Korea.


2019 ◽  
Author(s):  
Nicole Gruenheit ◽  
Amy Baldwin ◽  
Balint Stewart ◽  
Sarah Jaques ◽  
Thomas Keller ◽  
...  

AbstractGenomes can be sequenced with relative ease, but ascribing gene function remains a major challenge. Genetically tractable model systems are crucial to meet this challenge. One powerful model is the social amoebaDictyostelium discoideum, a eukaryotic microbe widely used to study diverse questions in cell, developmental and evolutionary biology. However, its utility is hampered by the inefficiency with which sequence, transcriptome or proteome variation can be linked to phenotype. To address this, we have developed methods (REMI-seq) to (1) generate a near genome-wide resource of individual mutants (2) allow large-scale parallel phenotyping. We demonstrate that integrating these resources allows novel regulators of cell migration, phagocytosis and macropinocytosis to be rapidly identified. Therefore, these methods and resources provide a step change for high throughput gene discovery in a key model system, and the study of genes affecting traits associated with higher eukaryotes.


2018 ◽  
Author(s):  
Bernhard O. Palsson ◽  
◽  
Jared T. Broddrick ◽  
Zachary A. King ◽  
◽  
...  

2018 ◽  
pp. 175-207
Author(s):  
Nayan Moni Deori ◽  
Rachayeeta Deb ◽  
Riddhi Banerjee ◽  
Shirisha Nagotu

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Tang ◽  
Yuantai Wu ◽  
Sarah E. Herlihy ◽  
Francisco J. Brito-Aleman ◽  
Jose H. Ting ◽  
...  

ABSTRACT In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum. AprA is a chemorepellent for and inhibits the proliferation of D. discoideum. We previously found that cells sense AprA using G proteins, suggesting the existence of a G protein-coupled AprA receptor. To identify the AprA receptor, we screened mutants lacking putative G protein-coupled receptors. We found that, compared to the wild-type strain, cells lacking putative receptor GrlH (grlH¯ cells) show rapid proliferation, do not have large numbers of cells moving away from the edges of colonies, are insensitive to AprA-induced proliferation inhibition and chemorepulsion, and have decreased AprA binding. Expression of GrlH in grlH¯ cells (grlH¯/grlH OE ) rescues the phenotypes described above. These data indicate that AprA signaling may be mediated by GrlH in D. discoideum. IMPORTANCE Little is known about how eukaryotic cells can count themselves and thus regulate the size of a tissue or density of cells. In addition, little is known about how eukaryotic cells can sense a repellant signal and move away from the source of the repellant, for instance, to organize the movement of cells in a developing embryo or to move immune cells out of a tissue. In this study, we found that a eukaryotic microbe uses G protein-coupled receptors to mediate both cell density sensing and chemorepulsion.


2017 ◽  
Vol 114 (10) ◽  
pp. 2651-2656 ◽  
Author(s):  
Kerry A. Whittaker ◽  
Tatiana A. Rynearson

The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations (FST> 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophylla. Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophylla, a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Catarina A. Marques ◽  
Nicholas J. Dickens ◽  
Daniel Paape ◽  
Samantha J. Campbell ◽  
Richard McCulloch

Sign in / Sign up

Export Citation Format

Share Document