tetramer structure
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Kyosuke Sakai ◽  
Hiroki Kitajima ◽  
Keiji Sasaki

Abstract Plasmonic nanostructures have considerable applicability in light–matter interactions owing to their capacity for strong field confinement and enhancement. Nanogap structures allow us to tailor electric field distributions at the nanoscale, bridging the differences in size and shape of atomic and light structures. In this study, we demonstrated that a plasmonic tetramer structure can squeeze structured light into a nanoscale area, in which a strong field gradient allows access to forbidden transitions. Numerical simulations showed that the gold tetramer structure on a glass substrate possesses a plasmonic eigenmode, which forms structured light with a quadrupole profile in the nanogap region at the center of the tetramer. The top–down technique employed using electron-beam lithography allows us to produce a gap size of approximately 50 nm, which supports plasmonic resonance in the near-infrared regime. In addition, we demonstrated an array architecture in which a collective lattice resonance enhances the intensity of the quadrupole field in multiple lattice units. This study highlights the possibility of accessing multipolar transitions in a combined system of structured light and plasmonic nanostructures. Our findings may lead to new platforms for spectroscopy, sensing, and light sources that take advantage of the full electronic spectrum of an emitter.


Author(s):  
Isabel Pont ◽  
Jorge Gonzàlez-Garcia

DNA is the fundamental biomolecule needed for correct cell functioning and, until very recently, it was associated to the double helix structure discovered over 70 years ago by Crick, Watson, and Franklin. However, other DNA structures and conformations have been described, like G-quadruplexes. These G-quadruplexes are formed in regions of the genome that are rich in guanine. They have tetramer structure and control biological processes such as genetic expression, protection against ageing, or the transmission of neural information. In this document, we describe their chemical and structural characteristics, besides presenting their main cellular functions. Lastly, we present G-quadruplexes as molecular targets for future cancer therapies.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Matthew A Cottee ◽  
Nadine Muschalik ◽  
Steven Johnson ◽  
Joanna Leveson ◽  
Jordan W Raff ◽  
...  

Sas-6 and Ana2/STIL proteins are required for centriole duplication and the homo-oligomerisation properties of Sas-6 help establish the ninefold symmetry of the central cartwheel that initiates centriole assembly. Ana2/STIL proteins are poorly conserved, but they all contain a predicted Central Coiled-Coil Domain (CCCD). Here we show that the Drosophila Ana2 CCCD forms a tetramer, and we solve its structure to 0.8 Å, revealing that it adopts an unusual parallel-coil topology. We also solve the structure of the Drosophila Sas-6 N-terminal domain to 2.9 Å revealing that it forms higher-order oligomers through canonical interactions. Point mutations that perturb Sas-6 or Ana2 homo-oligomerisation in vitro strongly perturb centriole assembly in vivo. Thus, efficient centriole duplication in flies requires the homo-oligomerisation of both Sas-6 and Ana2, and the Ana2 CCCD tetramer structure provides important information on how these proteins might cooperate to form a cartwheel structure.


2009 ◽  
Vol 38 (2) ◽  
pp. 695-707 ◽  
Author(s):  
Andrew Bowman ◽  
Richard Ward ◽  
Hassane El-Mkami ◽  
Tom Owen-Hughes ◽  
David G. Norman

2009 ◽  
Vol 73 (10) ◽  
pp. 2360-2364 ◽  
Author(s):  
Zui FUJIMOTO ◽  
Satoshi KANEKO ◽  
Wook-Dong KIM ◽  
Gwi-Gun PARK ◽  
Mitsuru MOMMA ◽  
...  

2009 ◽  
Vol 11 (9) ◽  
pp. 1661-1665 ◽  
Author(s):  
Changqing Wang ◽  
Yongsheng Zhang ◽  
Yu Jia
Keyword(s):  
New Si ◽  

Sign in / Sign up

Export Citation Format

Share Document