waveguide surface
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Prasanna Kumaar S. ◽  
Sivasubramanian A.

Diabetes mellitus is a chronic metabolic condition that affects millions of people worldwide. The present paper investigates the bulk sensitivity of silicon and silicon nitride strip waveguides in the transverse electric (TE) mode. At 1550 nm wavelength, silicon on insulator (SOI) and silicon nitride (Si3N4) are two distinct waveguides of the same geometry structure that can react to refractive changes around the waveguide surface. This article examines the response of two silicon-based waveguide structures to the refractive index of urine samples (human renal fluids) to diagnose diabetes mellitus. An asymmetric Mach–Zehnder interferometer has waveguide sensing and a reference arm with a device that operates in the transverse electric (TE) mode. 3D FDTD simulated waveguide width 800 nm, thickness 220 nm, and analyte thickness 130 nm give the bulk sensitivity of 1.09 (RIU/RIU) and 1.04 (RIU/RIU) for silicon and silicon nitride, respectively, high compared to the regular transverse magnetic (TM) mode strip waveguides. Furthermore, the proposed design gives simple fabrication, contrasting sharply with the state-of-the-art 220 nm wafer technology.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5492
Author(s):  
Andrei Tsarev

Analysis of trends in the development of silicon photonics shows the high efficiency regarding the creation of optical sensors. The concept of bimodal sensors, which suggests moving away from the usual paradigm based only on single-mode waveguides and using the inter-mode interaction of guided optical waves in a two-mode optical waveguide, is developed in the present paper. In this case, the interaction occurs in the presence of an asymmetric periodic perturbation of the refractive index above the waveguide surface. Such a system has unique dispersion properties that lead to the implementation of collinear Bragg diffraction with the mode number transformation, in which there is an extremely high dependence of the Bragg wavelength on the change in the refractive index of the environment. This is called the “effect of dispersion-enhanced sensitivity”. In this paper, it is shown by numerical calculation methods that the effect can be used to create optical sensors with the homogeneous sensitivity higher than 3000 nm/RIU, which is many times better than that of sensors in single-mode waveguide structures.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 595
Author(s):  
Suruk Udomsom ◽  
Ukrit Mankong ◽  
Pathinan Paengnakorn ◽  
Nipon Theera-Umpon

Silicon photonic devices with either silicon or silicon nitride waveguides have increasingly been used in many applications besides communications, especially as sensors in label-free biosensing, where guided light signals are affected by biorecognition molecules immobilized on the surface. The coating of protein (i.e., bioreceptors) by biochemical process on the waveguide surface is a crucial step in creating a functionalized device that can be used for biosensing. As a conventional method that uses 3-aminopropryltriethoxysilane (APTES) and glutaraldehyde (GA), the APTES-GA method has the limitation of using a GA crosslink, of which the two functional groups can bind to nonspecific proteins, causing irregular binding. In this study, we proposed a new coating technique to avoid such problem by applying APTES silanization with 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC)-N-hydroxysuccinimide (NHS) protein crosslink, denoted by the APTES-(EDC/NHS) method. The EDC/NHS reaction was shown to be able to immobilize protein in ordered orientation due to consistent arrangement between a carboxylic group of protein molecules and an amine group of covalent-linked APTES on surface. By applying APTES silanization, we circumvented the use of hazardous cleaning agent in the conventional EDC/NHS technique. Several surface characterization techniques were carried out to assess and compare the two biocoating techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), spectroscopic ellipsometry (SE), and atomic force microscopy (AFM). On silicon, the results of antihuman TNF-alpha antibody coating showed that the proposed APTES-(EDC/NHS) technique has better repeatability in terms of less roughness of the coated protein at 1.5 nm compared with 6.3 nm, due to the ordered arrangement of coated antibody molecules. On a silicon nitride waveguide device, the proposed APTES-(EDC/NHS) technique exhibits dense antibody immobilization on a waveguide in SEM images due to stable amide bond formation via EDC/NHS crosslink mechanism. The specificity of the immobilized antibodies was confirmed by enzyme-linked immunosorbent assays (ELISA), with an average optical density at 450 nm of 0.175 ± 0.01 compared with 0.064 ± 0.009 of negative control. The proposed technique also reduced the overall process time since proteins are crosslinked to the silanized waveguide surface in a single step.


2021 ◽  
Author(s):  
Sipan Yang ◽  
Yaqian Li ◽  
Jinbin Xu ◽  
Liying Wu ◽  
Xueling Quan ◽  
...  

2020 ◽  
Vol 50 (4) ◽  
Author(s):  
Andrzej Kaźmierczak ◽  
Mateusz Słowikowski ◽  
Krystian Pavłov ◽  
Maciej Filipiak ◽  
Michael Vervaeke ◽  
...  

We present an optical signal coupling scheme for slab waveguide surface grating coupler sensors. The proposed solution is based on the use of polymer microlenses. In this work we analyze two types of compact polymer lenses: the aspheric plano-convex lenses and Fresnel lenses. The feasibility of the proposed scheme is demonstrated by the experimental investigation into the optical signal coupling to the test structure of TiO2-SiO2 slab waveguide surface grating coupler using both types of lenses.


Sign in / Sign up

Export Citation Format

Share Document