relativistic temperature
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Usman Shazad ◽  
Shafa Ullah ◽  
M. Iqbal

Abstract The self-organization of a thermally relativistic magnetized plasma comprising of electrons, positrons and static ions is investigated. The self-organized state is found to be the superposition of three distinct Beltrami fields known as triple Beltrami (TB) state. In general, the eigenvalues associated with the multiscale self-organized vortices may be a pair of complex conjugate and real one. It is shown that all the eigenvalues become real when thermal energy increases or the positron density decreases. The impact of relativistic temperature and positron density on the formation of self-organized structures is investigated. The self-organized field and flow vortices may vary simultaneously on vastly different length scales. The disparate variation of self-organized vortices is important in the context of dynamo theory. The present work is useful to study the formation of multiscale vortices and dynamo mechanisms in multi-species thermally relativistic plasmas.



2020 ◽  
Vol 498 (1) ◽  
pp. 959-980 ◽  
Author(s):  
Jens Chluba ◽  
Andrea Ravenni ◽  
Sandeep Kumar Acharya

ABSTRACT Spectral distortions of the cosmic microwave background (CMB) provide a unique tool for learning about the early phases of cosmic history, reaching deep into the primordial Universe. At redshifts z ≲ 106, thermalization processes become inefficient and existing limits from COBE/FIRAS imply that no more than Δρ/ρ ≲ 6 × 10−5 ($95{{\ \rm per\ cent}}$ c.l.) of energy could have been injected into the CMB. However, at higher redshifts, when thermalization is efficient, the constraint weakens and Δρ/ρ ≃ 0.01−0.1 could in principle have occurred. Existing computations for the evolution of distortions commonly assume Δρ/ρ ≪ 1 and thus become inaccurate in this case. Similarly, relativistic temperature corrections become relevant for large energy release, but have previously not been modelled as carefully. Here, we study the evolution of distortions and the thermalization process after single large energy release at z ≳ 105. We show that for large distortions the thermalization efficiency is significantly reduced and that the distortion visibility is sizeable to much earlier times. This tightens spectral distortions constraints on low-mass primordial black holes with masses $M_{\rm PBH}\lesssim 2 \times 10^{11}\, {\rm g}$. Similarly, distortion limits on the amplitude of the small-scale curvature power spectrum at wavenumbers $k\gtrsim 10^4\, {\rm Mpc}^{-1}$ and short-lived decaying particles with lifetimes $t_X\lesssim 10^7\, {\rm s}$ are tightened, however, these still require a more detailed time-dependent treatment. We also briefly discuss the constraints from measurements of the effective number of relativistic degrees of freedom and light element abundances and how these complement spectral distortion limits.



2018 ◽  
Vol 483 (3) ◽  
pp. 3459-3464 ◽  
Author(s):  
Mathieu Remazeilles ◽  
Boris Bolliet ◽  
Aditya Rotti ◽  
Jens Chluba


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Ding Lu ◽  
Zi-Liang Li ◽  
Bai-Song Xie

By solving the coupled equations of the electromagnetic field and electrostatic potential, we investigate solitary waves in an asymmetric electron–positron plasma and/or electron–positron–ion plasmas with delicate features. It is found that the solutions of the coupled equations can capture multipeak structures of solitary waves in the case of cold plasma, which are left out by using the long-wavelength approximation. By considering the effect of ion motion with respect to non-relativistic and ultra-relativistic temperature plasmas, we find that the ions’ mobility can lead to larger-amplitude solitary waves; especially, this becomes more obvious for a high-temperature plasma. The effects of asymmetric temperature between electrons and positrons and the ion fraction on the solitary waves are also studied and presented. It is shown that the amplitudes of solitary waves decrease with positron temperature in asymmetric temperature electron–positron plasmas and decrease also with ion concentration.



2009 ◽  
Vol 24 (01) ◽  
pp. 73-80 ◽  
Author(s):  
D. MI ◽  
HAI YANG ZHONG ◽  
D. M. TONG

In this letter, by using the properties of the entropy function and the fundamental equation of thermodynamics, we discuss the reasons that there exist different proposals for relativistic temperature transformation. Further, we illustrate this point by studying a concrete thermodynamic system-blackbody radiation.







Sign in / Sign up

Export Citation Format

Share Document