scholarly journals A Novel Route to Fabricate High-Performance 3D Printed Continuous Fiber-Reinforced Thermosetting Polymer Composites

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
Yueke Ming ◽  
Yugang Duan ◽  
Ben Wang ◽  
Hong Xiao ◽  
Xiaohui Zhang

Recently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber–resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed. In brief, the proposed process is based on the viscosity–temperature characteristics of the thermosetting epoxy resin (E-20). First, the desired 3D printing filament was prepared by impregnating a 3K carbon fiber with a thermosetting matrix at 130 °C. The adhesion and support required during printing were then provided by melting the resin into a viscous state in the heating head and rapidly cooling after pulling out from the printing nozzle. Finally, a powder compression post-curing method was used to accomplish the cross-linking reaction and shape preservation. Furthermore, the 3D-printed CFRTPCs exhibited a tensile strength and tensile modulus of 1476.11 MPa and 100.28 GPa, respectively, a flexural strength and flexural modulus of 858.05 MPa and 71.95 GPa, respectively, and an interlaminar shear strength of 48.75 MPa. Owing to its high performance and low concentration of defects, the proposed printing technique shows promise in further utilization and industrialization of 3D printing for different applications.

2019 ◽  
pp. 089270571988689
Author(s):  
Jian Wang ◽  
Feiyan Song ◽  
Mingxing Yu

An extrusion–calendering process was developed to continuously manufacture unidirectional continuous fiber-reinforced polypropylene single-polymer composites (PP SPCs). The process combined “undercooling” property of the matrix and “overheating” property of the fiber, which can not only establish a wide processing temperature window but also enhance the mechanical properties of the final SPCs. The best tensile strength and modulus of the PP SPCs with only 5 wt% fiber content were up to 53.34 ± 3.56 MPa and 1.81 ± 0.14 GPa, 2 times and 1.59 times higher than those of pure PP, respectively, and they also exceeded the theoretical values due to the high performance of the uniaxial fibers and the optimized process. The influences of the die temperature, fiber contents, and fiber distribution were studied. Scanning electron microscopy was also used to observe the morphological properties of the PP SPCs.


2021 ◽  
Author(s):  
Eckart Kunze ◽  
Michael Müller-Pabel ◽  
Oliver Weißenborn ◽  
Ron Luft ◽  
Johann Faust ◽  
...  

The economical production of lightweight structures with tailor-made properties and load-adapted geometry is limited using conventional technologies. Additive manufacturing processes offer a high potential to meet these requirements, where the established solutions are based primarily on thermoplastics matrix systems. From a process-technological point of view, thermoplastics enable simplified processing, but only a limited range of applications for high-performance components. These limitations are due to their comparatively low heat resistance, low melting temperatures and limited adhesion to embedded reinforcing fibers. In contrast, thermosets show high potential for realization of high- performance lightweight structures with adaptable properties. The present work employs a UV-curing thermoset resin for the impregnation of a continuous filament strand for 3D printing. The main challenge is to reconcile the crosslinking reaction of the thermoset and the process velocity during impregnation and cure. The liquid polymer must provide low initial viscosity to impregnate the filaments and a sufficiently high cure rate and dimensional stability after discharge from the print head to ensure sufficient bonding strength to the substrate. To demonstrate feasibility, a prototypic print head with UV-LED activation was designed and implemented. With a robot-guided printing platform, the 3D-deposition of continuous fiber-reinforcements without additional supporting structures can be realized. To derive initial process parameters, reaction and thermos-mechanical properties are determined by rheometer measurements. Impregnation and cure behavior of the glass fiber reinforced resin is investigated. The presented results provide a reliable process window and a straightforward process monitoring method for further enhancement of the conceived 3D printing process.


Author(s):  
Zhihui Liu ◽  
Jing Shi ◽  
Yachao Wang

3D printing (additive manufacturing) has become a popular method to create three-dimensional objects due to its high efficiency and is easy to operate. 3D printing of continuous fiber reinforced polymers has been a challenge. The fused deposition modeling (FDM) processes for this purpose were proposed and made possible only several years ago. The 3D printed continuous fiber reinforced polymers are able to improve the mechanical properties by leaps and bounds. In this paper, we aim to investigate the possibility of further improve the mechanical properties of 3D printed continuous fiber reinforced polymers by adding nano fillers to the polymer matrix. In experiment, the Kevlar fiber is chosen to be the continuous fiber material, and nylon 6 (PA 6) is chosen to be the polymer matrix material. Carbon nanotubes (CNTs) and graphene nano platelets (GNPs) nanoparticles are first mixed with nylon 6 pellets to make nanocomposites. The nanocomposites are then extruded into filaments for 3D printing. During the 3D printing process, both Kevlar filament and nanocomposite filament are fed through the printing nozzle and deposited on the platform. Tensile specimens are made from pure PA 6 and four types of nanocomposites, namely, 0.1wt% CNT/PA 6, 1wt% CNT/PA 6, 0.1wt% GNP/PA 6, 1wt% GNP/PA 6. By incorporating four layers of Kevlar fiber, which leads to the weight percentage of about 9% for Kevlar fiber in materials, fiber composite tensile specimens are made from Kevlar/PA 6 composite and four fiber reinforced nanocomposites, namely, Kevlar/0.1%CNT/PA 6, Kevlar/1%CNT/PA 6, Kevlar/0.1%GNP/PA 6, and Kevlar/1%GNP/PA 6. The tensile tests reveal that CNTs filled PA 6 nanocomposites show less significant improvements in mechanical properties as compared to the GNP filled PA 6. With only 0.1wt% of GNP, the tensile modulus improves by 101%, and with 1wt% of GNP, the modulus improves by 153%. The results also indicate that although Kevlar fibers dominate the main mechanical properties of the printed composite materials, the existence of GNP nano fillers also provide noticeable contribution to the enhancement of tensile strengths and moduli, while the effect of CNTs is much less pronounced.


2021 ◽  
Vol 8 ◽  
Author(s):  
Libing Liu ◽  
Dong Xiang ◽  
Yuanpeng Wu ◽  
Zuoxin Zhou ◽  
Hui Li ◽  
...  

With the development of wearable electronic devices, conductive polymer composites (CPCs) based flexible strain sensors are gaining tremendous popularity. In recent years, the applications of additive manufacturing (AM) technology (also known as 3D printing) in fabricating CPCs based flexible strain sensors have attracted the attention of researchers due to their advantages of mold-free structure, low cost, short time, and high accuracy. AM technology, based on material extrusion, photocuring, and laser sintering, produces complex and high-precision CPCs based wearable sensors through layer-by-layer stacking of printing material. Some high-performance CPCs based strain sensors are developed by employing different 3D printing technologies and printing materials. In this mini-review, we summarize and discuss the performance and applications of 3D printed CPCs based strain sensors in recent years. Finally, the current challenges and prospects of 3D printed strain sensors are also discussed to provide an insight into the future of strain sensors using 3D printing technology.


2021 ◽  
pp. 002199832110022
Author(s):  
Ahmed Alhelal ◽  
Zaheeruddin Mohammed ◽  
Shaik Jeelani ◽  
Vijaya K Rangari

Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.


Sign in / Sign up

Export Citation Format

Share Document