intraspecific hybrids
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
E.B. Bochkaryova ◽  
◽  
L.A. Gorlova ◽  
E.A. Strelnikov ◽  
V.V. Serdyuk ◽  
...  

Breeding of winter rapeseed in the V.S. Pustovoit All-Russian Research Institute of Oil Crops was started at the end of 60th of previous century with a selection of perspective winter forms from hybrids of spring brown mustard and winter rapeseed. Heterosis in intraspecific hybrids was studied. The best intraspecific hybrids exceeded the parental forms by 20–36% by seed yield, by 20–27% by green mass yield. A possibility to create intervarietal hybrids based on heterostyly was studied. Conditions for plants acclimation to increase cold resistance of winter rapeseed were studied; methods of selection for cold resistance were developed. In 1982, the development of rapeseed and turnip rape cultivars of ‘00’ type began. To create diversity of breeding germplasm, a great amount of samples from European counties that actively deals with rapeseed breeding were included into the work. In the V.S. Pustovoit All-Russian Research Institute of Oil Crops, the methods of estimation of oil and fodder protein quality were perfected, cultivars of rapeseed and turnip rape of ‘00’ type (e.g. erucic acid free and with low glucosinolate content) were developed. As a result of breeding for oil quality, high oleic cultivars were developed, that not only improve upon the oil nutritive efficiency but open new possibilities of its technical uses due to increasing oxi- and thermostability. The first Russian high oleic winter rapeseed cultivar Olivin was developed in the V.S. Pustovoit AllRussian Research Institute of Oil Crops and introduced in the State Variety Commission in 2019. The linear cultivars of winter rapeseed were developed by inbreeding, the first interlinear hybrids – using a CMS Ogura system. One of them named Debyut was introduced in the State variety trials 2020.


Author(s):  
Kristoffer Krogerus ◽  
Eugene Fletcher ◽  
Nils Rettberg ◽  
Brian Gibson ◽  
Richard Preiss

Abstract Yeast breeding is a powerful tool for developing and improving brewing yeast in a number of industry-relevant respects. However, breeding of industrial brewing yeast can be challenging, as strains are typically sterile and have large complex genomes. To facilitate breeding, we used the CRISPR/Cas9 system to generate double-stranded breaks in the MAT locus, generating transformants with a single specified mating type. The single mating type remained stable even after loss of the Cas9 plasmid, despite the strains being homothallic, and these strains could be readily mated with other brewing yeast transformants of opposite mating type. As a proof of concept, we applied this technology to generate yeast hybrids with an aim to increase β-lyase activity for fermentation of beer with enhanced hop flavour. First, a genetic and phenotypic pre-screening of 38 strains was carried out in order to identify potential parent strains with high β-lyase activity. Mating-competent transformants of eight parent strains were generated, and these were used to generate over 60 hybrids that were screened for β-lyase activity. Selected phenolic off-flavour positive (POF +) hybrids were further sporulated to generate meiotic segregants with high β-lyase activity, efficient wort fermentation, and lack of POF, all traits that are desirable in strains for the fermentation of modern hop-forward beers. Our study demonstrates the power of combining the CRISPR/Cas9 system with classic yeast breeding to facilitate development and diversification of brewing yeast. Key points • CRISPR/Cas9-based mating-type switching was applied to industrial yeast strains. • Transformed strains could be readily mated to form intraspecific hybrids. • Hybrids exhibited heterosis for a number of brewing-relevant traits.


2021 ◽  
Author(s):  
Matheus E Bianconi ◽  
Graciela Sotelo ◽  
Emma V Curran ◽  
Vanja Milenkovic ◽  
Emanuela Samaritani ◽  
...  

C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4, and C3+C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4-like photosynthetic efficiency in C3+C4 x C4, but not in C3 x C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3+C4 species providing an essential step for C4 evolution.


2021 ◽  
Vol 8 ◽  
Author(s):  
R. Gil-Muñoz ◽  
J. D. Moreno-Olivares ◽  
D. F. Paladines-Quezada ◽  
J. A. Bleda-Sánchez ◽  
A. Cebrían-Pérez ◽  
...  

One way in which the wine sector is reacting to the challenge of climate change is to develop plant material that is adapted to the new conditions. Such a strategy will allow the continuation of quality viticulture in traditional winemaking areas that will otherwise be abandoned. The objective of this study was to characterize the anthocyanin composition and content of selected intraspecific hybrids of Monastrell with two other varieties (Syrah and Cabernet Sauvignon). The experiment was carried out over three successive seasons, and the polyphenolic quality of the grapes and wines was assessed along with the adaptation of the hybrids to the high temperatures which will inevitably affect our area (south-eastern Spain). The results showed that, compared with grapes of the Monastrell variety and the wines made from them, most of the hybrids (MS10, MS34, and MC111) had a higher total anthocyanin concentration and overall content of acylated anthocyanins, depending on the year studied.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nadja Förster ◽  
Kyriaki Antoniadou ◽  
Matthias Zander ◽  
Sebastian Baur ◽  
Verena Karolin Mittermeier-Kleßinger ◽  
...  

Willow bark is traditionally used for pharmaceutical purposes. Evaluation is so far based on the salicylate content, however, health promoting effects of extracts might be attributed to the interaction of those salicylates with other compounds, which support and complement their action. So far, only S. purpurea, S. daphnoides, and S. fragilis are included in pharmaceutical extracts. Crossing with other species could result in a more diverse secondary metabolite profile with higher pharmacological value. With the help of targeted inter- and intraspecific crossing, new chemotypes were generated, whereby nine different Salix genotypes (S. alba, S. daphnoides, S. humboldtiana, S. lasiandra, S. nigra, S. pentandra, S. purpurea, S. x rubens, S. viminalis) were included in the study. Based on substances known for their health promoting potential and characteristic for Salix (selected phenolic compounds including salicylates), a targeted metabolomics analysis and clustering of 92 generated Salix clones was performed revealing four different cluster/chemoprofiles. In more specific, one group is formed by S. daphnoides clones and inter- and intraspecific hybrids, a second group by S. viminalis clones and inter- and intraspecific hybrids, a third group generally formed by S. alba, S. pentandra, S. x rubens, and S. lasiandra clones and hybrids, and a fourth group by S. purpurea clones and inter- and intraspecific hybrids. Clustering on the basis of the selected phenolic compounds can be used for identifying Salix clones with a different compound profile. New combinations of secondary plant metabolites offer the chance to identify Salix crosses with improved effects on human health.


2020 ◽  
pp. 50-54
Author(s):  
T. I. Saltanovish ◽  
A. N. Doncila

Relevance. High temperatures are among the environmental factors that negatively affect the development of most crops including tomatoes. Thus, important condition for the realization of potential plant productivity is the heat resistance.Methods of the gamete selection in combination with classical approaches can be used to select resistant genotypes and create initial breeding material with resistance to the temperature factor. Materials and methods.The experiments were carried out with intraspecific hybrids F4 of tomato: Elvira x Milenium, Elvira x Tomis, Elvira x Prestij, Mihaela x Milenium, Mihaela x Tomis, Mihaela x Prestij, Jubiliar х Milenium, Jubiliar x Tomis, Jubiliar x Prestij, Milenium x Elvira, Milenium x  Mihaela. Plants were grown in the field. Flowers were collected, anthers were separated, pollen was isolated. Pollen was heated for 2 or 4 hours at 43°C in the experimental variants. In the control, pollen was maintained at a temperature of 26°C. Then pollen was sown and germinated on a cultural medium. The viability was determined by the length of pollen tubes.Results.A different reaction of pollen grains to temperature influence was established. The main sources of variability and their contribution to the variability of the pollen and seedling traits were determined. The temperature and genotype mainly determine the variability of the gametophyte and sporophyte. More than half of the hybrids combined high indicators of resistance of both pollen and seedlings, formed a larger number of flowers and better set fruits. Thus, tomato genotypes with good indicators of heat-resistance for applying in breeding have been identified based on a complex of methods for assessing the resistance of hybrids using gametophyte and sporophyte characteristics, as well as results of genetic-statistical analysis. 


2020 ◽  
Vol 228 (6) ◽  
pp. 1852-1863
Author(s):  
Steven Dreissig ◽  
Andreas Maurer ◽  
Rajiv Sharma ◽  
Linda Milne ◽  
Andrew John Flavell ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1149
Author(s):  
Sahana Shivaramu ◽  
Ievgen Lebeda ◽  
Vojtěch Kašpar ◽  
Martin Flajšhans

Hatchery-reared sterlet originating from the Danube and Volga river basins that showed population-discriminatory alleles on at least one microsatellite locus were used to produce purebred (within-population) and hybrid crosses to evaluate intraspecific hybridization with respect to the genetic polymorphism and physiological fitness of fish for commercial aquaculture and, conservation programs. Reciprocal crossing assessed the effect of parent position. The fish were reared in indoor and outdoor tanks and monitored over 504 days for growth traits. The highest final mean body weight (144.9 ± 59.5 g) was recorded in the Danube (♀) × Volga (♂) hybrid and the highest survival in the Volga (♀) × Danube (♂) hybrid. The Volga purebred exhibited the lowest mean body weight (124.8 ± 57.6 g). A set of six microsatellites was used to evaluate the heterozygosity. The mean number of alleles was highest in the Danube (♀) × Volga (♂) hybrid and lowest in the Volga purebred, suggesting an influence of the parent position in the hybridization matrix. The higher level of genetic polymorphism, as in the Danube (♀) × Volga (♂) hybrid, may confer greater fitness in a novel environment. Our analysis revealed that the intraspecific hybrids performed better than the purebred fish in the controlled and suboptimal rearing conditions.


Sign in / Sign up

Export Citation Format

Share Document