heating station
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 16)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 147-162
Author(s):  
Batyr Orazbayev ◽  
Zhadra Moldasheva ◽  
Kulman Orazbayeva ◽  
Valentina Makhatova ◽  
Lyailya Kurmangaziyeva ◽  
...  

The relevance of the study is substantiated by the fact that when managing the processes of oil transportation through main pipelines, it becomes necessary to determine and select the optimal operating modes of the oil pipeline units, taking into account the fuzziness of some part of the initial information. In this regard, solving the problem of multi-criteria selection of effective operating modes for an oil heating station for a hot oil pipeline system, which is often described in a fuzzy environment, based on the apparatus of fuzzy set theories, is an urgent scientific and practical problem. A method for the synthesis of models in the conditions of fuzzy output parameters of the object has been developed, with the help of which fuzzy models of the investigated oil heating station of the main oil pipeline have been built. Based on the modification and combination of various optimality principles, mathematical formulations of the problem of multi-criteria selection of effective operating modes for an oil heating station in a fuzzy environment are obtained. By modifying and adapting the principles of guaranteed results and equality in a fuzzy environment, a heuristic method has been developed for solving the formulated problem of selecting object's operation modes using the initial fuzzy information. The proposed heuristic method for multi-criteria selection in a fuzzy environment is based on the use of the experience and knowledge of the decision-maker. The proposed approach is implemented in the formulation and solution of the problem of multi-criteria selection of operating modes of the oil heating station in Atyrau of the Uzen-Atyrau-Samara main oil pipeline. As a result of the application of the proposed method, an improvement in the degree of fulfillment of a fuzzy restriction on environmental impact was achieved by 2 %, as well as the optimal values of the operating parameters of the object were improved: the temperature was reduced by 1.85 % (5.67 K), pressure – by 0.04 % (kPa) and fuel consumption – by 2.9 % (0.0002 kg/s). The obtained results have confirmed the effectiveness of the proposed approach to solving the assigned tasks.


Energy ◽  
2021 ◽  
pp. 122309
Author(s):  
Chendong Wang ◽  
Jianjuan Yuan ◽  
Ke Huang ◽  
Ji Zhang ◽  
Lihong Zheng ◽  
...  

Energy ◽  
2021 ◽  
Vol 222 ◽  
pp. 119961
Author(s):  
Jianjuan Yuan ◽  
Ke Huang ◽  
Zhao Han ◽  
Zhihua Zhou ◽  
Shilei Lu

2021 ◽  
Vol 36 (1) ◽  
pp. 35-43
Author(s):  
M. Längauer ◽  
G. Zitzenbacher ◽  
C. Burgstaller ◽  
C. Hochenauer

Abstract Thermoforming of thermoplastic composites attracts increasing attention in the community due to the mechanical performance of these materials and their recyclability. Yet there are still difficulties concerning the uniformity of the heating and overheating of parts prior to forming. The need for higher energy efficiencies opens new opportunities for research in this field. This is why this study presents a novel experimental method to classify the efficiency of infrared heaters in combination with different thermoplastic composite materials. In order to evaluate this, different organic sheets are heated in a laboratory scale heating station until a steady state condition is reached. This station mimics the heating stage of an industrial composite thermoforming device and allows sheets to slide on top of the pre-heated radiator at a known distance. By applying thermodynamic balances, the efficiency of chosen parameters and setups is tested. The tests show that long heating times are required and the efficiency of the heating is low. Furthermore, the efficiency is strongly dependent on the distance of the heater to the sheet, the heater temperature and also the number of heating elements. Yet, using a full reflector system proves to have a huge effect and the heating time can be decreased by almost 50%.


2020 ◽  
Vol 3 (3) ◽  
pp. 40
Author(s):  
Qing Liu

It’s a compressive article consists of three parts, an overview of pipeline development in China, oil pipeline design for R oilfield and pipeline management suggestions. First, this article introduces the current status of pipeline construction, oil pipeline technology and gas pipeline technology in China in recent years. The current status of China’s pipeline construction is divided into three stages. In terms of construction, pipeline construction is developing in the direction of intelligence and modernization. Long-distance oil pipelines require technical breakthroughs in two aspects. One is the sequential oil product delivery technology to improve the type of oil that can be delivered sequentially; the second is the viscosity reduction delivery technology for heavy oil. Gas transmission pipelines are developing in the direction of high pressure, large diameter and high steel grade. Secondly, based on all the pipeline development above, in order to meet the development of R oil field, an oil-water two-phase pipeline transportation design and a pipeline crossing river design were carried out. Under the condition of the design pressure of the pipeline of 5.5MPa, it is preferable to produce a pipeline of φ219×6.5mm, and the steel grade of the pipeline is L360. A heating station and pumping station are needed in the transportation process, and the heating station and pumping station are combined for one construction. Considering that the strata of the river crossing section are mainly gravel sand layer, clay layer and non-lithological stratum, horizontal directional drilling (HDD) is adopted for river crossing, and suggestions are made for the construction process. Finally, after the pipeline was put into production, the corresponding auxiliary production system and supporting engineering suggestions were put forward.


2020 ◽  
Vol 229 ◽  
pp. 110521
Author(s):  
Jianjuan Yuan ◽  
Zhihua Zhou ◽  
Chendong Wang ◽  
Shilei Lu ◽  
Ke Huang ◽  
...  

Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105730
Author(s):  
Alexander P. Svintsov ◽  
Vera V. Galishnikova ◽  
Nadezhda А. Stashevskaya

Sign in / Sign up

Export Citation Format

Share Document