Enhanced Infrared Heating of Thermoplastic Composite Sheets for Thermoforming Processes

2021 ◽  
Vol 36 (1) ◽  
pp. 35-43
Author(s):  
M. Längauer ◽  
G. Zitzenbacher ◽  
C. Burgstaller ◽  
C. Hochenauer

Abstract Thermoforming of thermoplastic composites attracts increasing attention in the community due to the mechanical performance of these materials and their recyclability. Yet there are still difficulties concerning the uniformity of the heating and overheating of parts prior to forming. The need for higher energy efficiencies opens new opportunities for research in this field. This is why this study presents a novel experimental method to classify the efficiency of infrared heaters in combination with different thermoplastic composite materials. In order to evaluate this, different organic sheets are heated in a laboratory scale heating station until a steady state condition is reached. This station mimics the heating stage of an industrial composite thermoforming device and allows sheets to slide on top of the pre-heated radiator at a known distance. By applying thermodynamic balances, the efficiency of chosen parameters and setups is tested. The tests show that long heating times are required and the efficiency of the heating is low. Furthermore, the efficiency is strongly dependent on the distance of the heater to the sheet, the heater temperature and also the number of heating elements. Yet, using a full reflector system proves to have a huge effect and the heating time can be decreased by almost 50%.

Author(s):  
S Boria ◽  
A Scattina ◽  
G Belingardi

In the last years, the spread of composite laminates into the engineering sectors was observed; the main reason lies in higher values of strength/weight and stiffness/weight ratios with respect to conventional materials. Firstly, the attention was focused on fibres reinforced with thermosetting matrix. Then, the necessity to move towards low density and recyclable solutions has implied the development of composites made with thermoplastic matrix. Even if the first application of thermoplastic composites can be found into no structural parts, the replacement of metallic structural parts with such material in areas potentially subjected to impact has become worthy of investigation. Depending on the field of application and on the design geometry, in fact, some components can be subjected to repeated impacts at localized sites either during fabrication, activities of routine maintenance or during service conditions. When composite material was adopted, even though the impact damage associated to the single impact event can be slight, the accumulation of the damage over time may seriously weaken the mechanical performance of the structure. In this overview, the capability of energy absorption of a new composite completely made of thermoplastic material was investigated. This material was able to combine two conflicting requirements: the recyclability and the lightweight. In particular, repeated impacts at low velocity, on self-reinforced laminates made of polypropylene (PP), were conducted by experimental drop dart tests. Repeated impacts up to the perforation or up to 40 times were performed. In the analysis, three different energy levels and three different values of the laminate thicknesses were considered in order to analyse the damage behaviour under various experimental configurations. A visual observation of the impacted specimens was done, in order to evaluate the damage progression. Moreover, the trend of the peak force interchanged between specimen and dart and the evolution of both the absorbed energy and of the bending stiffness with the impacts number were studied. The results pointed out that the maximum load and the stiffness of the specimens tended to grow increasing the number of the repeated impacts. Such trend is opposite compared to the previous results obtained by other researchers using thermosetting composites.


Author(s):  
Sridher Rangisetty ◽  
Larry D. Peel

Recently, carbon fiber-reinforced thermoplastics (CFRTPs) have become popular choices in desktop-based additive manufacturing, but there is limited information on their effective usage. In Fused Deposition Modeling (FDM), a structure is created by layers of extruded beads. The degree of bonding between beads, bead orientation, degree of interlayer bonding, type of infill and the type of material, determines overall mechanical performance. The presence of chopped fibers in thermoplastics increases melt viscosity, changes coefficients of thermal expansion, may have layer adhesion issues, and causes increased wear on nozzles, which makes FDM fabrication of thermoplastic composites somewhat different from neat thermoplastics. In the current work, best practices and the effect of annealing and infill patterns on the mechanical performance of FDM-fabricated composite parts were investigated. Materials included commercially available PLA, CF-PLA, ABS, CF-ABS, PETG, and CF-PETG. Two sets of ASTM D638 tensile and ASTM D790 flexural test specimens with 3 different infill patterns and each material were fabricated, one set annealed, and all tested. Anisotropic behavior was observed as a function of infill pattern. As expected, strength and stiffness were higher when the beads were oriented in the direction of the load, even for neat resins. All fiber-filled tensile results showed an increase in stiffness, but surprisingly, not in strength (likely due to very short fiber lengths). Tests of annealed specimens resulted in clear improvements in tensile strength, tensile stiffness and flexural strength for PLA, CF-PLA, and PETG, CF-PETG but a reduction in flexural stiffness. Also, annealing resulted in mixed improvements for ABS and CF-ABS and is only useful in certain infill patterns. This work also establishes ‘Best Practices’ of FDM-type fabrication of thermoplastic composite structures and documents the minimum critical fiber lengths and fiber fractions of several CF-filled FDM filaments.


2020 ◽  
Vol 8 (2) ◽  
pp. 68-129
Author(s):  
J. Müssig ◽  
N. Graupner

Due to the increasing discussion about sustainable and CO2-reduced materials, the demand for cellulose-based fibres as a reinforcing component in thermoplastic composites has increased considerably. Knowledge about the possibilities of modifying fibres for improved adhesion to the plastic matrix is essential in this context. The fibre/matrix adhesion in cellulose fibre-reinforced polymers is of considerable importance for the design of composite materials. Unfortunately, there are no standards for many essential methods to determine fibre/matrix adhesion. In this review article, various methods for measuring the interfacial shear strength between fibres and matrix, as an indirect characterisation of adhesion, are presented. Additionally, a brief overview of different methods for surface modification of cellulose fibres to improve the adhesion to a thermoplastic matrix is given. This review focuses on the fact that the parameters for the production of test specimens as well as the test method itself can vary considerably from study to study. Because of this, the comparison of data from different publications is not always possible. Therefore, in this article, the main influencing factors and differences in the methods are presented and discussed. Based on a systematic review and a clear description and discussion of the methods, the reader is given a broad basis for a better understanding of characteristic values for fibre/matrix adhesion.


2012 ◽  
Vol 504-506 ◽  
pp. 243-248 ◽  
Author(s):  
Peng Wang ◽  
Nahiene Hamila ◽  
Philippe Boisse

The Continuous Fibre Reinforcements and Thermoplastic resin (CFRTP) are widely employed in the prepreg processes. Currently, the most used thermoplastic resins in aeronautics are PPS (polyphenylene sulfide) and PEEK (Polyetheretherketone). They present many advantages on their mechanical properties. However, these mechanical properties depend strongly upon the thermoforming conditions, especially the intraply shearing. In order to improve and complete the understanding about the in-plane shear behavior of thermoplastic composite materials in their forming processes, the thermo-mechanical analysis of PPS/carbon and PEEK/carbon commingled fabrics at different forming temperatures are performed by using the bias-extension tests. The experimental data leads to significant difference on the in-plane shear behavior under different temperature, as well as the wrinkles can be noted in certain thermoforming conditions. Therefore, in order to predict the feasible forming conditions and optimize the important forming parameters of the thermoplastic composites, the in-plan shear behaviors in function of temperature will be integrated into our numerical model to carry out the numerical simulations of thermoforming processes.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4161-4171
Author(s):  
Tsuyoshi Matsuo ◽  
Masaki Hojo ◽  
Kazuro Kageyama

For unidirectional thermoplastic composite materials, it is preferable to use tab-less specimens in tensile tests owing to the low adhesive performance between specimens and tabs, as well as considerable warpage in laminates due to compression molding. In this study, round-robin tests are performed for unidirectional laminates in the 0° and 90° directions by two types of thermoplastic composites – carbon/polyamide 6 and carbon/polypropylene. The purpose of the round-robin test is to examine the difference between tab-bonded and tab-less specimens. Statistical analyses determined the degree to which tab-less specimens influenced their evaluation of the mechanical performance. In addition, from the detailed experiments, precisely controlled gripping force, fine roughness of grip surfaces, and a few inserted abrasive papers had significant impact on the 0° tensile strength of tab-less specimens. Based on the results, 0° tab-less strength of the proposed gripping method was shown to be almost equal to that of tab-bonded specimens recommended by the present tensile test standard.


2010 ◽  
Vol 129-131 ◽  
pp. 1238-1243 ◽  
Author(s):  
Wei Gou Dong ◽  
Hai Ling Song

Two forms of perform were prepared by a Glass fiber/Polypropylene fiber commingled yarn. One was a three-dimensional woven fabric with an angle-interlock structure, and another was a two-dimensional plain woven fabric laminate. The three-dimensional woven fabric reinforced thermoplastic composites(3-DWRC) and two-dimensional woven fabric reinforced thermoplastic composites(2-DWRC) were fabricated by hot-press process. The Impact and tensile performances of both 3-DWRC and 2-DWRC were examined. Compared to the 2-DWRC, the 3-DWRC have better impact properties, the energy required to initiate cracks, the threshold force of the first oscillation and maximum load increased by 41.90%, 54.41%, 38.75% respectively under the low-energy impact conditions. The tensile tests shown that the 3-DWRC presented batter fracture toughness than the 2-DWRC. The use of thermoplastic composites is growing rapidly because of their excellent properties, a high toughness and damage tolerance, short processing cycles, and the ability to be reprocessed. But thermoplastic materials usually have a difficulty to impregnate between reinforcing fibers, due to high melt polymer viscosity. It is a technology innovation that the commingled yarns composed of reinforced fibers and thermoplastic fibers are used as prepreg for thermoplastic composite materials. Because thermoplastic fiber and reinforced fiber are closely combined, which reduces distances of resin’s infiltration, this can effectively overcome the difficulties of resin’s impregnation. The commingled yarns can be woven and knitted, and can facilitate the processing of complex structural composites. Three-dimensional fabrics reinforced composites are ideal materials with excellent integrity because it is linked with yarns between layers. Its shearing strength between layers, damage tolerance and reliability are better than the two-dimensional fabric laminated composites. At present, the researches of thermoplastic materials with two-dimensional fabric reinforced structure made from commingled yarns are much more, such as manufacturing technology, material properties ,effects of process conditions on properties, relationship between structures and properties, and so on [1-8]. However, only a few studies appear in literature on the structure-property relationships of three-dimensional fabric reinforced thermoplastic composite materials made of commingled yarns [9-10]. Byun, Hyung Joon et al. [9] undertook the impact test and the tensile test on 3-D woven thermoplastic composite materials and 2-D plain woven laminate which is made by CF/PEEK mixed yarn. Dong Weiguo and Huang Gu[10] studied the porosity, tensile and bending properties on 3-D woven thermoplastic composites which make from core-spun yarn containing glass fibers and polypropylene fibers. The aim of this study was to investigate the impact behavior of and tensile properties of 3-D woven fabric thermoplastic composites made by a GF/PP commingled yarns. Attempts was made to identify the damage mode of the 3-D woven fabric thermoplastic composites under the low energy impact and tensile conditions.


2017 ◽  
Vol 742 ◽  
pp. 506-511 ◽  
Author(s):  
Alexander Lüking ◽  
Robert Brüll ◽  
Thomas Köhler ◽  
Davide Pico ◽  
Gunnar Seide ◽  
...  

The film stacking method is the industrial standard for the manufacturing of fibre reinforced thermoplastic composites (FRTCs). An alternative to this is commingling thermoplastic fibres with reinforcement fibres, e. g. glass fibres, into hybrid yarns. However, the composites produced by the use of film-stacking or hybrid yarns cannot achieve an optimal impregnation of reinforcement fibres with the matrix polymer. This stens from the high melt viscosity of thermoplastics, which prevents a uniform wetting of the reinforcement fibres. Leaving some fibers is unconnected to the matrix. This leads to composite lower strength than theoretically possible. The aim of the research is the coating of a single glass filament in the glass fibre nozzle drawing process to achive a homogenous distribution of glass fibres and matrix in the final composite. The approach uses particles with a diameter from 5 to 25 μm of polyamide 12 (PA 12) which are electrostatically charged and blown at an Eglass filament in the nozzle drawing process as seen in. The particles adhering to the filament are melted by infrared heating and winded afterwards. This development will allow the homogenous distribution of fibres and the matrix in a thermoplastic composite allowing a higher fibre volume content leading to improved mechanical properties. Even though the glass filaments could be coated with PA 12, a homogenous sheath could not be achieved in this investigation. Therefore, further research will focus on an improved homogeneity by reducing the agglomeration of PA 12, using dried PA12 and enhancing the coating setup.


2021 ◽  
Vol 2 (3) ◽  

Aerospace industry requires engineering materials with significant mechanical strength, low cost, easy to recycle, easy to process, and high chemical resistance. Thermoplastic composites are considered as new generation aerospace structural materials due to their superior characteristics. In this study, one of the most common methods used in manufacturing of thermoplastic composite parts from unidirectional (UD) pre-consolidated prepreg (blank), press forming process is investigated and crack behavior of the samples is examined. The forming process is utilized, and consolidated blanks of UD CF/PEEK and GF/PP composite materials are shaped by pressing, and mechanical tests are performed. Micro defects on the samples are monitored by microscopic examination and scanning electron microscopy (SEM) analysis. Results show that when the temperatures of CF/PEEK and GF/PP blank are increased by preheating, the formability of both composites are enhanced. Final outcomes reveal that both CF/PEEK and GF/PP composite materials can easily be used for possible aircraft structures. Additionally, CF/PEEK is found to be appropriate not only secondary structures but also for primary structures.


2021 ◽  
pp. 002199832110267
Author(s):  
RDR Sitohang ◽  
WJB Grouve ◽  
LL Warnet ◽  
S Koussios ◽  
R Akkerman

In-plane fiber waviness is one of the defects that can occur from the stamp-forming process of thermoplastic composite (TPC) parts. The influence of this defect on the mechanical performance of multidirectional composites is not yet fully understood. The main challenge in determining the influence on mechanical properties lies in reproducing the waviness in test coupons that can subsequently be subjected to testing. This paper describes an experimental approach to reproduce representative in-plane waviness defects, specific for TPC, by reverse-forming of V-shape parts of various bend angles and inner radii. Characterization results show that this method enables the manufacturing of localized in-plane waviness in flat 24-ply quasi-isotropic C/PEEK composites with no voids. Furthermore, laminates having varying levels of maximum waviness angle ([Formula: see text]), between 14° to 64°, were successfully produced in this work. By comparing the [Formula: see text] value with the examples of industrial stamp-formed parts, it can be concluded that the developed coupon manufacturing method can reproduce waviness from TPC part production reasonably well. Finally, all of the produced laminates have defective region lengths smaller than 20 mm, localized within a predefined location which makes them well suited for standard compression test coupons.


Sign in / Sign up

Export Citation Format

Share Document