fertilizer equivalence
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1395 ◽  
Author(s):  
Dennis Beesigamukama ◽  
Benson Mochoge ◽  
Nicholas Korir ◽  
Martha W. Musyoka ◽  
Komi K. M. Fiaboe ◽  
...  

The use of black soldier fly frass fertilizer (BSFFF) is being promoted globally. However, information on nitrogen (N) fertilizer equivalence (NFE) value and synchrony of N mineralization for crop production remains largely unknown. Comparative studies between BSFFF and commercial organic fertilizer (SAFI) were undertaken under field conditions to determine synchrony of N release for maize uptake. The BSFFF, SAFI, and urea fertilizers were applied at the rates of 0, 30, 60, and 100 kg N ha−1. The yield data from urea treated plots were used to determine the NFE of both organic inputs. Results showed that maize from BSFFF treated plots had higher N uptake than that from SAFI treated plots. High N immobilization was observed throughout the active growth stages of maize grown in soil amended with BSFFF, whereas soil treated with SAFI achieved net N release at the silking stage. Up to three times higher negative N fluxes were observed in SAFI amended soils as compared with BSFFF treated plots at the tasseling stage. The BSFFF applied at 30 and 60 kg N ha−1 achieved significantly higher NFE than all SAFI treatments. Our findings revealed that BSFFF is a promising and sustainable alternative to SAFI or urea for enhanced maize production.


2019 ◽  
Vol 114 (3) ◽  
pp. 225-235
Author(s):  
Juan Pablo Garcia Montealegre ◽  
Charles Wortmann ◽  
Richard Ferguson ◽  
Timothy Shaver ◽  
Richard Little ◽  
...  

2018 ◽  
Vol 35 (1) ◽  
pp. 49-58 ◽  
Author(s):  
John M. Luna ◽  
Dan Sullivan ◽  
Amy M. Garrett ◽  
Lan Xue

AbstractNitrogen (N) is a difficult nutrient to manage in organic farming systems, and yield reductions related to N deficiency have been reported in organic systems. Legume-based cover crops offer opportunities for biologically fixed N; however, improved quantification of N contribution is needed for cost-effective N management. A 2-yr experiment was conducted near Corvallis, OR, USA, in 2007 and 2008 to (1) evaluate biomass production and N accumulation from selected cover crop treatments, (2) compare the effects of fall-planted cover crops on broccoli [(Brassica oleraceae L. (Italica group)] yield, (3) estimate the quantity of feather meal-N replaced by cover crops. Cover crop treatments included common vetch (Vicia sativa L.), phacelia (Phacelia tanacetifolia Benth), oats (Avena sativa L.) and the mixtures phacelia plus vetch, oats plus vetch and a no-cover crop (fallow) treatment as the control. Using feather meal as an N source, four rates of N fertilizer (0, 100, 200 and 300 kg N ha−1) were randomized within each cover crop treatment in a randomized, split-plot design. Cover crop biomass and N accumulation differed between the 2 yr of the study. In 2007, total biomass accumulation ranged from 5000 to 10,000 kg ha−1, whereas in 2008, cover crop accumulation was 1500 to 5000 kg ha−1. Biomass of both phacelia and vetch (in mixtures or as sole crops) was reduced by 80% from 2007 to 2008, whereas oat biomass and weed biomass in the fallow plots was reduced by only 40% between the 2 yr. The accumulation of N was also reduced in 2008, with vetch (either as a sole crop or in mixtures) contributing less than a third of total N produced in 2007. In 2007, vetch and vetch-based cover crop mixtures increased broccoli yield compared with the fallow, providing 100–135 kg fertilizer equivalent N ha−1. But due to decreased cover crop biomass and N accumulation in 2008, vetch and vetch-based mixtures failed to increase broccoli yield, providing <20 kg N ha−1 fertilizer equivalence. In 2007, oats grown as a sole cover crop reduced broccoli yield when no supplemental N was applied. In 2008, both phacelia and oats reduced broccoli yield at all N levels, with estimated N fertilizer equivalence values of −80 to −95 kg N ha−1. Although legume and legume mixtures increased broccoli yield in only 1 yr of the experiment, addition of vetch to the mixtures reduced yield loss in both years compared with oats and phacelia grown as sole crops.


2015 ◽  
Vol 95 (4) ◽  
pp. 305-319 ◽  
Author(s):  
D. V. Ige ◽  
S. M. Sayem ◽  
O. O. Akinremi

Ige, D. V., Sayem, S. M. and Akinremi, O. O. 2015. Nitrogen mineralization in beef- and pig-manure-amended soils measured using anion resin method. Can. J. Soil Sci. 95: 305–319. A major challenge facing the widespread use of manure is the uncertainty about its fertilizer equivalence. This study was carried out to determine the fertilizer equivalence of locally available manures in two soils in Manitoba. A randomized complete block design was adopted with six treatments [nitrogen fertilizer, a liquid swine manure (LSM), three solid beef manures (SBM) and a control] and four replicates. Each treatment was applied to a cylindrical soil column installed at the site at the rate of 100 kg ha−1of “available N”, and leached NO3-N was captured by resin bags at the bottom of the cylinder. The soils and resin bags removed from the cylinders were sampled at 0, 1, 2, 4, 6, 8, 10, 14, and 18 wk following treatment application. Ammonium nitrogen in the amendments was nitrified within the first 2 to 3 wk with significant build-up of NO3-N in the soil above the control (P<0.05). The greatest available N was in the fertilizer treatment, followed by the LSM and the smallest was in the SBM. The available N in the three SBM was statistically similar (P>0.05). Approximately 50% of the inorganic N in LSM was available during the growing season, while 68 to 100% of SBM inorganic N was available. Between 4 and 25% of the organic N in the three SBM was mineralized during the growing season. High soil moisture hindered N mineralization and enhanced N loss in the clay soil. LSM has the greatest fertilizer equivalence, with a mean of 65 to 68%, of the four manure types used. The fertilizer equivalence of the three SBM ranged between 42 and 59% and was influenced by the manure C:N ratio and the soil environmental conditions. Our study suggests the need to revise the assumptions regarding manure N availability by considering soil environmental factors in the estimation of available N.


Crops & Soils ◽  
2014 ◽  
Vol 47 (6) ◽  
pp. 38-45
Author(s):  
Brett L. Gordon ◽  
Nathan A. Slaton ◽  
Richard J. Norman ◽  
Trenton L. Roberts

2014 ◽  
Vol 78 (5) ◽  
pp. 1674-1685 ◽  
Author(s):  
Brett L. Gordon ◽  
Nathan A. Slaton ◽  
Richard J. Norman ◽  
Trenton L. Roberts

2010 ◽  
Vol 2010 ◽  
pp. 1-6
Author(s):  
J. Craig Miller ◽  
T. Astatkie ◽  
Ali Madani

This paper compared dairy and hen manure P recovery relative to fertilizer P recovery for two Nova Scotia soils with different antecedent soil test P (STP), incubated for 5, 15, 30, 60, and 110 days. Fertilizer equivalence of manure P was expressed as P recovery ratio in percentage points (%PRR). Repeated measures analysis with soil pH covariate revealed: (1) manure %PRR averaged 72% (low-STP soil) and 80% (medium-STP soil), (2) there were no significant differences in %PRR between dairy and hen manure, and (3) manure %PRR decreased with incubation time for the low-STP soil but not for the medium-STP soil. The soil pH covariate was significant for both low- and medium-STP soils, and the relationship with %PRR was positive for low- but not for the medium-STP soil.


2003 ◽  
Vol 13 (4) ◽  
pp. 593-597 ◽  
Author(s):  
Meghan A. Curless ◽  
Keith A. Kelling

Within Wisconsin, there is a distinct movement toward dairy herd expansion and consolidation of small farms. These large dairies are considering various land and manure management arrangements with non-livestock farmers, such as potato (Solanum tuberosum) producers to increase their manure management options. This study used a fertilizer equivalence approach to evaluate the availability of nitrogen from dairy manure to potatoes. Nitrogen (N) availability was evaluated in field experiments in 2000 and 2001, conducted in northeast Wisconsin using a moderate and a high liquid dairy manure rate [10,000 and 20,000 gal/acre (93,536 and 187,072 L·ha-1)] compared with results obtained from N fertilizer applied at five rates [0 to 240 lb/acre (269.0 kg·ha-1)]. Availability estimates using the fertilizer equivalence method based on tuber yield, harvested tuber N concentration and uptake, petiole nitrate concentration, and soil nitrate levels resulted in apparent availability of manurial N from 10% to 40%, with an overall average across both years of 29.2%. This level is only slightly less than values typically measured where corn has been used as the test crop. In spite of being more shallow-rooted and perhaps somewhat less efficient in N use it does not appear that adjustments to manurial N availability estimates are warranted when potatoes are grown.


Sign in / Sign up

Export Citation Format

Share Document