scholarly journals Preliminary Estimates of Nitrogen Availability from Liquid Dairy Manure to Potato

2003 ◽  
Vol 13 (4) ◽  
pp. 593-597 ◽  
Author(s):  
Meghan A. Curless ◽  
Keith A. Kelling

Within Wisconsin, there is a distinct movement toward dairy herd expansion and consolidation of small farms. These large dairies are considering various land and manure management arrangements with non-livestock farmers, such as potato (Solanum tuberosum) producers to increase their manure management options. This study used a fertilizer equivalence approach to evaluate the availability of nitrogen from dairy manure to potatoes. Nitrogen (N) availability was evaluated in field experiments in 2000 and 2001, conducted in northeast Wisconsin using a moderate and a high liquid dairy manure rate [10,000 and 20,000 gal/acre (93,536 and 187,072 L·ha-1)] compared with results obtained from N fertilizer applied at five rates [0 to 240 lb/acre (269.0 kg·ha-1)]. Availability estimates using the fertilizer equivalence method based on tuber yield, harvested tuber N concentration and uptake, petiole nitrate concentration, and soil nitrate levels resulted in apparent availability of manurial N from 10% to 40%, with an overall average across both years of 29.2%. This level is only slightly less than values typically measured where corn has been used as the test crop. In spite of being more shallow-rooted and perhaps somewhat less efficient in N use it does not appear that adjustments to manurial N availability estimates are warranted when potatoes are grown.

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 485 ◽  
Author(s):  
Adriano dos Santos ◽  
Antônio Teixeira do Amaral Júnior ◽  
Samuel Henrique Kamphorst ◽  
Gabriel Moreno Bernardo Gonçalves ◽  
Pedro Henrique Araújo Diniz Santos ◽  
...  

The global boom in agricultural production has been associated with the exponential increase of nitrogen (N) fertilizer application. This heavy use of nitrogen in agriculture has caused negative impacts on the environment. Therefore, new alternatives are needed to maintain or increase maize yield but reduce the environmental impact. For this purpose, one possibility is to plant N-use efficient (NUE) cultivars. In this context, the objective of this study was to identify popcorn hybrid cultivars that are highly NUE and N-responsive, bred from crosses between inbred lines with contrasting levels of N-use efficiency. For this purpose, 90 hybrids were evaluated in a 10 × 10 triple lattice design at two sites and two levels of N availability (low and ideal availability). The results indicated that for the environment with low nitrogen availability, the lack of nitrogen reduced the chlorophyll content, extended the interval between male and female flowering, and affected the performance of the tested hybrids. However, we observed the existence of hybrids with greater efficiency than the responsiveness to nitrogen and with high productivity. These can even be used on farms where the level of production inputs is low, thus contributing to ensure food security.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 257 ◽  
Author(s):  
Rui Yang ◽  
Xi Liang ◽  
Jessica Torrion ◽  
Olga Walsh ◽  
Katherine O’Brien ◽  
...  

Wheat (Triticum aestivum L.) grain quality is determined by multiple physical and chemical attributes. However, previous studies mainly focused on protein quantity and composition, which may not be adequate for understanding grain quality, especially end-use quality. Field experiments were conducted at two locations for two years to better understand how and to what extent water and nitrogen (N) availability affect flour end-use quality. Four drought stress levels (i.e., mild, moderate, severe, and well-watered) and four N rates (i.e., zero, low, medium, and high) were applied to two spring wheat cultivars (i.e., Dayn and Egan). Evaluated end-use quality traits, including milling quality, mixograph parameters, flour protein and gluten contents, solvent retention capacity (SRC), and baking quality. Most end-use quality parameters were not significantly different between the well-watered treatment and mild drought stress in both cultivars. Nitrogen availability above the low rate (168 kg N ha−1) failed to further improve most end-use quality traits in either cultivar. Among all the end-use quality traits, lactic acid SRC may be a reliable indicator of flour end-use quality. These results indicate that mild drought stress (i.e., a 25% reduction in irrigation throughout the growing season) may not negatively affect end-use quality and excessive N fertilization offers minimal improvement in end-use quality. Such information could facilitate the development of irrigation and fertilization guidelines targeting at grain quality.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 444 ◽  
Author(s):  
Gabriel Maltais-Landry ◽  
Zoran Nesic ◽  
Nicholas Grant ◽  
Brianna Thompson ◽  
Sean M. Smukler

Optimal manure management can maximize agronomic benefits and minimize environmental impacts. Field experiments were conducted in the Pacific Northwest (Vancouver, Canada) to determine how chicken and horse manures that were fall-applied to meet nitrogen crop demand affect soil ammonium (NH4+) and nitrate (NO3−), apparent net mineralization (ANM) and nitrification (ANN), crop biomass and nutrient concentration, and fluxes of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4). Relative to horse manure, chicken manure increased soil NH4+ by 60-fold, ANM by 2-fold, and ANN by 4-fold. Emissions of N2O (+600%) and CO2 (+45%) were greater and growing season CO2 emissions (−40%) were lower after application of chicken than horse manure. Productivity of cover crop (+30%), legume cover crop (−25%), and squash cash crop (+20%) were affected by chicken relative to horse manure. Overall, fall-applied chicken manure increased yields, N availability, and environmental impacts relative to horse manure.


1998 ◽  
Vol 78 (3) ◽  
pp. 563-572 ◽  
Author(s):  
V. Jowkin ◽  
J. J. Schoenau

Nitrogen availability to a spring wheat crop was examined in the cropping season in a side-by-side comparison of no-till (first year) and tillage fallow in an undulating farm field in the Brown soil zone in southwestern Saskatchewan. Thirty different sampling points along a grid in each tillage landscape were randomly selected, representing 10 each of shoulder, footslope and level landscape positions. Nitrogen availability was studied i) by profile inorganic N content ii) by crop N uptake and yield of spring wheat (Triticum aestivum L.) and iii) by 15N tracer technique and in situ burial of anion exchange resin membranes (AEM).Pre-seeding available moisture content of the surface soil samples was significantly higher under no-till compared with tillage fallow. However, no significant differences in pre-seeding profile total inorganic N, crop N uptake and yield were observed between the treatments. At the landform scale, shoulder positions of the respective tillage systems had lower profile inorganic N, crop N uptake and yield compared with other slope positions. Soil N supply power, as determined by 15N tracer and AEM techniques, was not significantly different between the tillage treatments, indicating that N availability is not likely to be greatly affected in initial years by switching to no-till fallow in these soils under normal moisture conditions. Key words: Summerfallow, landscape, nitrogen, wheat


2004 ◽  
Vol 84 (2) ◽  
pp. 419-430 ◽  
Author(s):  
G. W. Clayton ◽  
K. N. Harker ◽  
J. T. O’Donovan ◽  
R. E. Blackshaw ◽  
L. M. Dosdall ◽  
...  

More flexible and effective weed control with herbicide-tolerant B. napus canola allows for additional seeding management options, such as fall (dormant) and early spring (ES) seeding. Field experiments were conducted at Lacombe and Beaverlodge (1999–2001), Didsbury (1999–2000), and Lethbridge (2000–2001), Alberta, Canada, primarily to evaluate the effect of fall (late October-November), ES (late April-early May), and normal spring (NS) (ca. mid-May) seeding dates on glufosinate-, glyphosate-, and imidazolinone-tolerant canola development and yield. Fall seeding resulted in 46% lower plant density and nearly double the dockage than spring seeding. ES-seeded canola had 19% higher seed yield and 2.1% higher oil content than fall-seeded canola. ES seeding significantly increased yield compared to fall-seeded canola for 8 of 10 site -years or compared to NS seeding for 4 of 10 site-years; ES-seeded canola equalled the yield of NS-seeded canola for 6 of 10 site-years. Yield response to seeding date did not differ among herbicide-tolerant cultivars. Seeding date did not influence root maggot damage. Seeding canola as soon as possible in spring increases the likelihood of optimizing canola yield and quality compared to fall seeding and traditional spring seeding dates. Key words: Dormant seeding, seeding management, root maggot, herbicide-resistant crops, yield components, operational diversity


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 235 ◽  
Author(s):  
X. Y. Liu ◽  
M. Rezaei Rashti ◽  
M. Esfandbod ◽  
B. Powell ◽  
C. R. Chen

Liming has been widely used to decrease soil acidity, but its effects on soil nitrogen (N) availability and microbial processes in sugarcane fields are largely unknown. Adjacent sugarcane soils at 26 months after liming (26ML), 14 months after liming (14ML) and with no lime amendment (CK) in Bundaberg, Australia, were selected to investigate the effect of liming on soil N bioavailability and microbial activity in a long-term subtropical sugarcane cropping system. Liming in both 14ML and 26ML treatments significantly increased soil pH (by 1.2–1.4 units) and exchangeable Ca2+ (>2-fold) compared with the CK treatment. The lower concentrations of hot water extractable organic carbon (C) and total N and ammonium-N in the 14ML, compared with the CK and 26ML treatments, can be attributed to the absence of trash blanket placement in the former. Enhanced microbial immobilisation due to improved soil pH by liming (14ML and 26ML treatments) led to increased soil microbial biomass C and N, particularly in the presence of a trash blanket (26 ML treatment), but decreased soil respiration and metabolic quotient indicated that acidic stress conditions were alleviated in the liming treatments. Soil pH was the main factor governing soil enzyme activities, with an overall decrease in all enzyme activities in response to liming. Overall, liming and trash blanket practices improved sugarcane soil fertility. Further study is warranted to investigate the shifts in soil microbial community composition and the diversity and abundance of N-associated functional genes in response to liming in sugarcane fields.


Author(s):  
Andrew Scott ◽  
Roger Murray ◽  
Yuan-Ching Tien ◽  
Edward Topp

The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: At harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than did hay from unamended control plots. Fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids did result in a few gene targets being more abundant on hay at the first harvest. Fermentation of hay did result in an increase in the abundance of gene targets, but this occurred both with hay from amended and control plots. Overall, application of fecal amendments will result in an increase in the abundance of some gene targets associated with antibiotic resistance on first cut hay.


2016 ◽  
Vol 13 (18) ◽  
pp. 5395-5403 ◽  
Author(s):  
Maya Almaraz ◽  
Stephen Porder

Abstract. There are many proxies used to measure nitrogen (N) availability in watersheds, but the degree to which they do (or do not) correlate within a watershed has not been systematically addressed. We surveyed the literature for intact forest or grassland watersheds globally, in which several metrics of nitrogen availability have been measured. Our metrics included the following: foliar δ15N, soil δ15N, net nitrification, net N mineralization, and the ratio of dissolved inorganic to organic nitrogen (DIN : DON) in soil solution and streams. We were particularly interested in whether terrestrial and stream based proxies for N availability were correlated where they were measured in the same place. Not surprisingly, the strongest correlation (Kendall's τ) was between net nitrification and N mineralization (τ  =  0.71, p < 0.0001). Net nitrification and N mineralization were each correlated with foliar and soil δ15N (p < 0.05). Foliar and soil δ15N were more tightly correlated in tropical sites (τ  =  0.68, p < 0.0001), than in temperate sites (τ  =  0.23, p  =  0.02). The only significant correlations between terrestrial- and water-based metrics were those of net nitrification (τ  =  0.48, p  =  0.01) and N mineralization (τ  =  0.69, p  =  0.0001) with stream DIN : DON. The relationship between stream DIN : DON with both net nitrification and N mineralization was significant only in temperate, but not tropical regions. To our surprise, we did not find a significant correlation between soil δ15N and stream DIN : DON, despite the fact that both have been used to infer spatially or temporally integrated N status. Given that both soil δ15N and stream DIN : DON are used to infer long-term N status, their lack of correlation in watersheds merits further investigation.


Sign in / Sign up

Export Citation Format

Share Document