scholarly journals Assessment of a New Lateral Cushioned Casting Orthosis: Effects on Peroneus Longus Muscle Electromyographic Activity During Running

2021 ◽  
Vol 9 (12) ◽  
pp. 232596712110591
Author(s):  
Rubén Sánchez-Gómez ◽  
Carlos Romero-Morales ◽  
Álvaro Gómez-Carrión ◽  
Ignacio Zaragoza-García ◽  
Carlos Martínez-Sebastián ◽  
...  

Background: Classical medial wedge (CMW) orthoses have been prescribed to treat overpronation foot pathologies in runners. The effects of a novel supination orthosis (NSO) on the surface electromyography (EMG) activity of the peroneus longus (PL) muscle during a complete cycle of running have yet to be tested. Purpose/Hypothesis: The purpose of this study was to compare the EMG activity of the PL in participants wearing CMW orthoses and NSOs versus neutral running shoes (NRS) during a full cycle of running gait. It was hypothesized that the PL muscle activity would be lower for the NSO compared with CMW or NRS. Study Design: Controlled laboratory study. Methods: Included were 31 healthy recreational runners of both sexes (14 male and 17 female; mean age, 38.58 ± 4.02 years) with a neutral Foot Posture Index and standard rearfoot-strike pattern. Participants ran on a treadmill at 9 km/h while wearing NSO (3-, 6-, and 9-mm thicknesses), CMW (3-, 6-, and 9-mm thicknesses), and NRS, for a total of 7 different conditions randomly selected, while the EMG signal activity of the PL was recorded for 30 seconds. Each trial was recorded 3 times, and the intraclass correlation coefficient (ICC) to test reliability of the measurements was calculated. The Wilcoxon pair to pair nonparametric test with Bonferroni correction was performed to analyze differences among the conditions. Results: The reliability of all assessments was almost perfect (ICC, >0.81). For both the CMW and NSO, regardless of thickness, the PL activity was statistically significantly lower compared with the NRS ( P < .05 for all). For all CMW thicknesses, the PL activity was lower compared with the respective NSO thicknesses, with the 3-mm thickness having the largest difference (CMW3mm, 18.63 ± 4.64 vs NSO3mm, 20.78 ± 4.99 mV; P < .001). Conclusion: Both CMW and NSO produced reduced EMG activity of the PL muscle; therefore, they can be prescribed to treat overpronation pathologies without associated PL strain concerns. In addition, the NSO saved the enhancement material placed on the medial-rear side of CMW, making it easier to wear sports shoes. Clinical Relevance: Knowing the safety of CMW and NSO will aid in understanding treatments for overpronation pathologies.

2001 ◽  
Vol 81 (5) ◽  
pp. 1096-1101 ◽  
Author(s):  
Gregory J Lehman ◽  
Stuart M McGill

Abstract Background and Purpose. Controversy exists around exercises and clinical tests that attempt to differentially activate the upper or lower portions of the rectus abdominis muscle. The purpose of this study was to assess the activation of the upper and lower portions of the rectus abdominis muscle during a variety of abdominal muscle contractions. Subjects. Subjects (N=11) were selected from a university population for athletic ability and low subcutaneous fat to optimize electromyographic (EMG) signal collection. Methods. Controlling for spine curvature, range of motion, and posture (and, therefore, muscle length), EMG activity of the external oblique muscle and upper and lower portions of rectus abdominis muscle was measured during the isometric portion of curl-ups, abdominal muscle lifts, leg raises, and restricted or attempted leg raises and curl-ups. A one-way repeated-measures analysis of variance was used to test for differences in activity between exercises in the external oblique and rectus abdominis muscles as well as between the portions of the rectus abdominis muscle. Results. No differences in muscle activity were found between the upper and lower portions of the rectus abdominis muscle within and between exercises. External oblique muscle activity, however, showed differences between exercises. Discussion and Conclusion. Normalizing the EMG signal led the authors to believe that the differences between the portions of the rectus abdominis muscle are small and may lack clinical or therapeutic relevance.


Author(s):  
Andréia C. O. Silva, PT, MSc ◽  
Claudia S. Oliveira, PT, PhD ◽  
Daniela A. Biasotto-Gonzalez, PT, PhD ◽  
Marco A. Fumagalli, Eng, PhD ◽  
Fabiano Politti, PT, PhD

Background and Purpose: The lack of clear knowledge about the etiology of nonspecific neck pain (NS-NP) strengthens the need for other mech-anisms, still poorly described in the literature, to be investigated. Therefore, a quantitative analysis of two cases of NS-NP in subjects with functiona dyspepsia was conducted in order to verify the immediate and seven-day postintervention effects of visceral manipulation (VM) to the stomach and liver on neck pain, cervical range of motion (ROM), and electromyographic (EMG) activity of the upper trapezius muscle. Case Description: Case A was an 18-year-old female with a complaint of nonspecific neck pain for one year, with reported pain on waking, momentary intermittent pain, and occasional symptoms of paresthesia in the upper limbs. Case B was a 25-year-old female with a complaint of cervical pain for one year, accompanied by pain in the unilateral temporomandibular joint, and medial thoracic region. Both cases presented functional dyspepsia.Outcomes: The results demonstrated (sub-jects A and B, respectively) a general increase in cervical ROM (range: 12.5% to 44.44%) and amplitude of the EMG signal (immediately postintervention: 57.62 and 20.78; post seven days: 53.54% and 18.83%), and an increase in muscle fiber conduction velocity immediately postintervention (4.44% and 7.44%) and a de-crease seven days postintervention (25.25% and 21.18%). For pain, a decrease was observed immediately postintervention (23.07% and 76.92%) and seven days postintervention (100% for both subjects). Discussion: A single VM provided important clinical improvement in neck pain, cervical spine range of motion, and EMG activity of the upper trapezius muscle, immediately and seven days postintervention in two NS-NP subjects with func-tional dyspepsia.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3205
Author(s):  
Rubén Sánchez-Gómez ◽  
Carlos Romero-Morales ◽  
Álvaro Gómez-Carrión ◽  
Blanca De-la-Cruz-Torres ◽  
Ignacio Zaragoza-García ◽  
...  

Background: The mobility of the first metatarsophalangeal joint (I MPTJ) has been related to the proper windlass mechanism and the triceps surae during the heel-off phase of running gait; the orthopedic treatment of the I MPTJ restriction has been made with typical Morton extension orthoses (TMEO). Nowadays it is unclear what effects TMEO or the novel inverted rocker orthoses (NIRO) have on the EMG activity of triceps surae during running. Objective: To compare the TMEO effects versus NIRO on EMG triceps surae on medialis and lateralis gastrocnemius activity during running. Study design: A cross-sectional pilot study. Methods: 21 healthy, recreational runners were enrolled in the present research (mean age 31.41 ± 4.33) to run on a treadmill at 9 km/h using aleatory NIRO of 6 mm, NIRO of 8 mm, TMEO of 6 mm, TMEO of 8 mm, and sports shoes only (SO), while the muscular EMG of medial and lateral gastrocnemius activity during 30 s was recorded. Statistical intraclass correlation coefficient (ICC) to test reliability was calculated and the Wilcoxon test of all five different situations were tested. Results: The reliability of values was almost perfect. Data showed that the gastrocnemius lateralis increased its EMG activity between SO vs. NIRO-8 mm (22.27 ± 2.51 vs. 25.96 ± 4.68 mV, p < 0.05) and SO vs. TMEO-6mm (22.27 ± 2.51 vs. 24.72 ± 5.08 mV, p < 0.05). Regarding gastrocnemius medialis, values showed an EMG notable increase in activity between SO vs. NIRO-6mm (22.93 ± 2.1 vs. 26.44 ± 3.63, p < 0.001), vs. NIRO-8mm (28.89 ± 3.6, p < 0.001), and vs. TMEO-6mm (25.12 ± 3.51, p < 0.05). Conclusions: Both TMEO and NIRO have shown an increased EMG of the lateralis and medialis gastrocnemius muscles activity during a full running cycle gait. Clinicians should take into account the present evidence when they want to treat I MTPJ restriction with orthoses, and consider the inherent triceps surae muscular cost relative to running economy.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Alicja Rutkowska-Kucharska ◽  
Agnieszka Szpala

SummaryStudy aim: the aim of our study was to evaluate electromyography (EMG) activity in exercises where the load to the muscles is determined by the external torque. In a part of the exercises, we changed the value of the external force, while in the other we modified the length of the lever arm at which the force was applied.Material and methods: the study was carried out on a group of 12 subjects (21 ± 2 years, 61 ± 4.8 mass, 172 ± 5 cm height). Electromyographic activity of the rectus abdominis (RA) muscle was evaluated by recording the EMG signal. The length of the lever arm of the external force was changed by using four different positions of the upper limbs, whereas the magnitude of the external force was changed through adding the weights of 0.5, 1.0, and 1.5 kg. The data recorded were normalized with respect to EMG activity measured under maximum voluntary contraction (MVC) conditions.Results: it was found that the change of the lever arm at which the force was applied (any change in the position of the upper limbs) causes a change in EMG activity in each part of the RA muscle from ca. 50% to ca. 100% MVC (p < 0.001). Further, the change in the external load changes statistically significantly the EMG activity only in the left upper part of the RA muscle (p < 0.05).Conclusions: activity in the RA muscle that increased for longer lever arms of the external force, offers opportunities for changing the load used during the exercise in a manner that is safe for the vertebral column.


2021 ◽  
Vol 79 (1) ◽  
pp. 5-13
Author(s):  
Thomas K. Marino ◽  
Daniel B. Coelho ◽  
Adriano E. Lima-Silva ◽  
Romulo Bertuzzi

Abstract In the present study, we analysed the validity and reliability of a new tool designed to assist the measurement of maximal upper-limb strength in rock climbers in a specific way, named MBboard. The MBboard consists of an artificial small climbing hold affixed to a wooden board, which is connected to any cable-motion strength equipment to determine the maximum dynamic strength (MBboard-1RM). Ten male rock climbers (Rock Climbing Group, RCG = 10) and ten physically active men (Control Group, CG = 10) performed, on three separate occasions, a familiarization session with procedures adopted during MBboard-1RM testing and two experimental trials (i.e., test and retest) to determine the construct validity and reliability of the MBboard during unilateral seated cable row exercise. In the first trial, the electromyographic activity (EMG) was recorded from the flexor digitorum superficialis. The self-reported climbing ability was also recorded. The RCG had superior performance (i.e. 37.5%) and EMG activity (i.e. 51%) in MBboard-1RM testing when compared with the CG (p < 0.05). There was a significant correlation between the MBboard-1RM results and climbing ability (r > 0.72, p < 0.05). Intraclass correlation coefficient analysis revealed good reliability within trials (ICC > 0.79, p < 0.05). These findings suggest that the MBboard is a valid and reliable tool to assess rock climbing-specific maximal strength. The validity of MBboard-1RM appears to be related to the finger flexor muscles activation, probably reflecting the specific adaptations resulting from long-term practice of this sport discipline.


2018 ◽  
Vol 10 (1) ◽  
pp. 141-149
Author(s):  
Shahrzad Zandi ◽  
Reza Rajabi ◽  
Mohammadali Mohseni-Bandpei ◽  
Hooman Minoonejad

AbstractStudy aim: The aim of this study was to investigate the reliability of the electromyographic activity of selected shoulder girdle muscles during the overhead volleyball throw.Material and methods: The test-retest reliability of EMG activity of selected shoulder muscles during an overhead volleyball throw was investigated in 15 non-symptomatic university-level female volleyball players for within-day sessions (with a one-hour interval) and between-day sessions (with a one-week interval). Time broadness (a measure of coordination) and root mean square of electromyography signals were obtained. Results: A high within-day (0.85-0.99) and moderate to high between-day (0.68-0.93) intraclass correlation coefficient for normalized RMS activity and a high within-day and between-day intraclass correlation coefficient (0.94 and 0.80; respectively) for time broadness were observed. Absolute agreement of measurements had small values (0.15-1.96). Trends toward higher intraclass correlation coefficient values and lower standard error of measurements, minimum detectable change, mean differ­ences and limits of agreements values were observed for within-day reliability in all test results compared with between-day reliability.Conclusions: The results suggest that the activity of shoulder muscles can be reliably assessed during the overhead volleyball throw with the described procedure both in the amplitude domain (normalized average root mean square) and the time domain (time broadness of the activities).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dorian Glories ◽  
Mathias Soulhol ◽  
David Amarantini ◽  
Julien Duclay

AbstractDuring voluntary contractions, corticomuscular coherence (CMC) is thought to reflect a mutual interaction between cortical and muscle oscillatory activities, respectively measured by electroencephalography (EEG) and electromyography (EMG). However, it remains unclear whether CMC modulation would depend on the contribution of neural mechanisms acting at the spinal level. To this purpose, modulations of CMC were compared during submaximal isometric, shortening and lengthening contractions of the soleus (SOL) and the medial gastrocnemius (MG) with a concurrent analysis of changes in spinal excitability that may be reduced during lengthening contractions. Submaximal contractions intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time–frequency domain between the Cz EEG electrode signal and the unrectified SOL or MG EMG signal. Spinal excitability was quantified through normalized Hoffmann (H) reflex amplitude. The results indicate that beta-band CMC and normalized H-reflex were significantly lower in SOL during lengthening compared with isometric contractions, but were similar in MG for all three muscle contraction types. Collectively, these results highlight an effect of contraction type on beta-band CMC, although it may differ between agonist synergist muscles. These novel findings also provide new evidence that beta-band CMC modulation may involve spinal regulatory mechanisms.


Author(s):  
Emma Černis ◽  
Jessica C. Bird ◽  
Andrew Molodynski ◽  
Anke Ehlers ◽  
Daniel Freeman

Abstract Background: Catastrophic cognitive appraisals, similar to those in anxiety disorders, are implicated in depersonalisation, a form of dissociation. No scales exist to measure appraisals of dissociative experiences. Dissociation is common in psychosis. Misinterpretations of dissociative experiences may maintain psychotic symptoms. Therefore, assessing appraisals in this context may be valuable. Aims: The primary aim was to develop a measure of key appraisals of dissociation in psychosis. Secondary aims were to test the relationship between appraisals and psychotic experiences (paranoia and hallucinations), and determine whether appraisals explain additional variance in psychotic symptoms above dissociative symptoms. Method: Fifty items were generated from transcripts of interviews with patients. The measure was developed and psychometrically validated via factor analysis of data from 9902 general population participants and 1026 patients with psychosis. Convergent validity, test–re-test reliability, and internal reliability were assessed. Regression analyses tested relationships with psychotic symptoms. Results: A 13-item single-factor measure was developed. Factor analysis indicated good model fit [χ2(65) = 247.173, comparative fit index (CFI) = 0.960, root mean square error of approximation (RMSEA) = 0.052]. The scale had good convergent validity with a rumination (non-clinical: r = 0.71; clinical: r = 0.73) and dissociation measure (r = 0.81; r = 0.80), high internal consistency (α = 0.93; α = 0.93), and excellent 1-week test–re-test reliability [intraclass correlation (ICC) = 0.90]. It explained variance in psychotic symptoms (paranoia: 36.4%; hallucinations: 35.0%), including additional variance compared with dissociation alone (paranoia: 5.3%; hallucinations: 2.3%). Conclusions: The Cognitive Appraisals of Dissociation in Psychosis (CAD-P) measure is a psychometrically robust scale identifying appraisals of dissociative experiences in psychosis and is associated with the presence of psychotic experiences. It is likely to prove useful for clinical assessment and research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Kadlec ◽  
Matthew J. Jordan ◽  
Leanne Snyder ◽  
Jacqueline Alderson ◽  
Sophia Nimphius

Abstract Purpose To examine the test re-test reliability of isometric maximal voluntary contractions (MVC) of hip adduction (ADDISO), hip abduction (ABDISO), and multijoint leg extension (SQUATISO) in sub-elite female Australian footballers. Methods Data were collected from 24 sub-elite female Australian footballers (age 22.6 ± 4.5 years; height 169.4 ± 5.5 cm; body mass 66.6 ± 8.0 kg; 4.5 ± 4.4 years sport-specific training; 2.5 ± 2.0 years unstructured resistance training) from the same club on two non-consecutive days. Participants performed three isometric MVCs of ADDISO, ABDISO, and SQUATISO. The SQUATISO was performed at 140° knee flexion with a vertical trunk position and ADDISO and ABDISO measures were performed in a supine position at 60° of knee flexion and 60° hip flexion. Reliability was assessed using paired t tests and the intraclass correlation coefficient (ICC) with 95% confidence intervals (CI), typical error (TE), and coefficient of variation (CV%) with 95% CI. Results SQUATISO peak force (ICC .95; CV% 4.1), ABDISO for left, right, and sum (ICC .90–.92; CV% 5.0–5.7), and ADDISO for left, right, and sum (ICC .86–.91; CV% 6.2–6.9) were deemed acceptably reliable based on predetermined criteria (ICC ≥ .8 and CV% ≤ 10). Conclusion SQUATISO, ABDISO, and ADDISO tests demonstrated acceptable reliability for the assessment of peak force in sub-elite female Australian footballers, suggesting these assessments are suitable for muscle strength testing and monitoring adaptations to training.


Author(s):  
Daniel Rojas-Valverde ◽  
José Pino-Ortega ◽  
Rafael Timón ◽  
Randall Gutiérrez-Vargas ◽  
Braulio Sánchez-Ureña ◽  
...  

The extensive use of wearable sensors in sport medicine, exercise medicine, and health has increased the interest in their study. That is why it is necessary to test these technologies’ efficiency, effectiveness, agreement, and reliability in different settings. Consequently, the purpose of this article was to analyze the magnetic, angular rate, and gravity (MARG) sensor’s test-retest agreement and reliability when assessing multiple body segments’ external loads during off-road running. A total of 18 off-road runners (38.78 ± 10.38 years, 73.24 ± 12.6 kg, 172.17 ± 9.48 cm) ran two laps (1st and 2nd Lap) of a 12 km circuit wearing six MARG sensors. The sensors were attached to six different body segments: left (MPLeft) and right (MPRight) malleolus peroneus, left (VLLeft) and right (VLRight) vastus lateralis, lumbar (L1-L3), and thorax (T2-T4) using a special neoprene suit. After a principal component analysis (PCA) was performed, the total data set variance of all body segments was represented by 44.08%–70.64% for the 1st PCA factor considering two variables, Player LoadRT and Impacts, on L1-L3, respectively. These two variables were chosen among three total accelerometry-based external load indicators (ABELIs) to perform the agreement and reliability tests due to their relevance based on PCAs for each body segment. There were no significant differences between laps in the Player LoadRT or Impacts ( p > 0.05, trivial). The intraclass correlation and lineal correlation showed a substantial to almost perfect over-time test consistency assessed via reliability in both Player LoadRT and Impacts. Bias and t-test assessments showed good agreement between Laps. It can be concluded that MARGs sensors offer significant test re-test reliability and good agreement when assessing off-road kinematics in the six different body segments.


Sign in / Sign up

Export Citation Format

Share Document