scholarly journals The emergent past: past natural and human disturbances of trees can reduce their present resistance to drought stress

Author(s):  
Hans Pretzsch

AbstractForest tree growth is primarily explained, modelled, and predicted depending on current age or size, environmental conditions, and competitive status in the stand. The accumulated size is commonly used as a proxy for a tree's past development. However, recent studies suggest that antecedent conditions may impact present growth by epigenetic, transcriptional, proteomic, or metabolic changes alongside physiological and structural properties. Here, I analysed the ecological memory effect embedded in the xylem as a tree-ring structure. I used 35 mature Norway spruces (Picea abies (L.) H. Karst.) and 36 European beeches (Fagus sylvatica L.) of the Kranzberg Forest water retention experiment KROOF in South Germany to scrutinise how their past development determines the growth of control plots and plots with 5-year water retention. I hypothesised that the current size and growing conditions determine tree growth and drought stress resistance. Metrics quantifying the trees’ recent and past growth, and correlation and linear mixed models with random effects revealed the following ecological memory effects. (1) For both species, the progressive growth course, low inter-annual growth variation in the long term, and low growth deflections in the recent past increased the growth resistance to drought. (2) The correlation between the past growth metrics and current stress reactions revealed that legacy effects could reach back 5–30 years; I found short- and long-term ecological memory. (3) Parameters of model prediction of the basic model with only size as a predictor of tree growth could be improved. The results suggest differences in the internal stem structure and ring pattern cause-specific differences in the trees' functioning and growth. I conclude that a long-term progressive increase and low variation in ring width may improve water conduction and reduce embolism in both species. Annual growth variation and low growth events in the recent past may have primed the morphology and allocation of the Norway spruce to better resist drought. The strong reduction in current growth, drought resistance by irregular growth, and past growth disturbances reveal a memory effect embedded in the tree ring pattern, suggesting further exploration and consideration in tree monitoring, growth modelling, and silvicultural prescriptions.

2010 ◽  
Vol 14 (19) ◽  
pp. 1-20 ◽  
Author(s):  
A. Park Williams ◽  
Joel Michaelsen ◽  
Steven W. Leavitt ◽  
Christopher J. Still

Abstract In the early 1900s, tree-ring scientists began analyzing the relative widths of annual growth rings preserved in the cross sections of trees to infer past climate variations. Now, many ring-width index (RWI) chronologies, each representing a specific site and species, are archived online within the International Tree-Ring Data Bank (ITRDB). Comparing annual tree-ring-width data from 1097 sites in the continental United States to climate data, the authors quantitatively evaluated how trees at each site have historically responded to interannual climate variations. For each site, they developed a climate-driven statistical growth equation that uses regional climate variables to model RWI values. The authors applied these growth models to predict how tree growth will respond to twenty-first-century climate change, considering four climate projections. Although caution should be taken when extrapolating past relationships with climate into the future, the authors observed several clear and interesting patterns in the growth projections that seem likely if warming continues. Most notably, the models project that productivity of dominant tree species in the southwestern United States will decrease substantially during this century, especially in warmer and drier areas. In the northwest, nonlinear growth relationships with temperature may lead to warming-induced declines in growth for many trees that historically responded positively to warmer temperatures. This work takes advantage of the unmatched temporal length and spatial breath of annual growth data available within the ITRDB and exemplifies the potential of this ever-growing archive of tree-ring data to serve in meta-analyses of large-scale forest ecology.


2021 ◽  
Author(s):  
Martin P. Girardin ◽  
Xiao Jing Guo ◽  
Juha Metsaranta ◽  
David Gervais ◽  
Elizabeth Campbell ◽  
...  

Understanding the magnitude and cause of variation in tree growth and forest productivity is central to sustainable forest management. Measurements of annual growth rings allow assessments of individual tree, tree population and forest ecosystem vulnerabilities to drought stress or other changing forest disturbance regimes (insects, diseases, fire), which can be used to identify areas at greatest risk of forest losses. Given a heightened demand for tree-ring data, we consolidated and synthesized tree-ring studies and datasets gathered over the past 30 years in Canada by scientists with the Canadian Forest Service and research partners. We incorporated these datasets into a data repository that currently contains tree-ring measurements from 40,206 tree samples from 4,594 sites and 62 tree species from all Canadian provinces and territories. Through our synthesis, we demonstrate the value of such large ensembles of tree-ring data for identifying patterns in tree growth over large spatial scales by mapping pan-Canadian drought sensitivity. Overall, we found high coherence in the samples analysed; low coherence was generally limited to data- poor regions and species. Drought sensitivity was widespread across species and regions: 34% of sampled trees displayed a significant positive relationship between annual growth increment and summer soil moisture index. Dependence upon water availability in species Picea mariana, Pinus banksiana, Pinus contorta, and Pseudotsuga menziesii was more strongly expressed in the warmest regions of the species’ range; for species Picea glauca and Populus tremuloides, drought sensitivity was stronger in the driest regions. This unprecedented consolidation and synthesis of tree-ring data will enable new research initiatives (e.g., meta-analyses) aimed at improved understanding of the drivers, patterns, and implications of changes in tree growth, as well as facilitating new research collaborations in earth and environmental sciences. Amongst other things, there is a need for expanding the spatial distribution of sites across Canada’s northern regions, increasing the number of samples collected from older stands and angiosperm species, and integrate datasets from studies that evaluate the effects of silvicultural experiments, including provenance and progeny trials, on tree growth.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 219-226 ◽  
Author(s):  
Bernd Becker

Radiocarbon variations between 3900 and 2800 bc have been established in La Jolla and Groningen using oak tree rings from a 2350-year floating oak series. Comparison of these variations with the bristlecone pine 14C variations provides precise ages for tree-ring dates of Neolithic settlements of Switzerland and Germany over a period of 1400 years. 14C variations measured in Heidelberg in absolutely dated oak-ring series from ad 250 to 720 show trends similar to those of long-term growth variation of oaks during the same period of time. The influence of the climatic regime on oak growth of this period is discussed.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 577
Author(s):  
Weiwei Lu ◽  
Xinxiao Yu ◽  
Guodong Jia

Long-term tree growth is significantly affected by climate change, which have become a global concern. Tree-ring width and isotopic information can show how trees respond to climate change on a long-term scale and reveal some phenomena of tree decline or death. In this study, we used isotopic techniques and investigated annual changes in carbon isotope composition and tree-ring width of Populus simonii Carr. in Zhangbei, as well as trends in tree-ring carbon discrimination (Δ13C) and iWUE in normal, mildly declining and severely declining trees, in order to make a retrospective analysis and further understand the process of tree decline. We found that there were significant differences (p < 0.01 **) in δ13C, Δ13C, ci and iWUE at different decline stages, meaning that the δ13C and iWUE could be new indicators of tree health. The iWUE of all groups increased significantly, while the growth rate of declined P. simonii was much higher than that of normal growth P. simonii. According to the analysis, there may be a threshold of iWUE for healthy trees, which once the threshold value is exceeded, it indicates that trees are resistant to adversity and their growth is under stress. Similarly, the changing trend of BAI supports our conclusion with its changes showed that tree growth became slower and slower as degradation progressed. iWUE inferred from tree-ring stable carbon isotope composition is a strong modulator of adaptation capacity in response to environmental stressors under climate change. Elevated annual temperatures and increased groundwater depth are all contributing to the decline of P. simonii in north China.


2015 ◽  
Vol 63 (1) ◽  
pp. 111-129 ◽  
Author(s):  
Maris Hordo ◽  
Vivika Kängsepp ◽  
Taavi Kannimäe ◽  
Priit Kask

AbstractLarch is widely used in tree-ring studies, while tree-ring width and signature years provide information on environmental changes with annual resolution. The aim of the study was to build tree-ring (TR), early- (EW) and latewood (LW) width chronologies by larch species (Hybrid, European, Russian, Japanese, Kuril), and to study the response of the radial increment of larches to weather at Järvselja forest stands by using correlation, redundancy analysis, and the pointer year method. The increment cores were collected from 233 trees in Järvselja larch stands during autumn 2014. The increment cores were collected from 24 stands and divided into five groups by larch species. High EPS values (≥ 0.887) for the larch species in all groups indicate that a sufficient number of trees was included in the chronologies to be representable. The results show that different species have a similar sensitivity to various weather variables. Among the factors influencing the size of radial growth of larches were the weather conditions prevailing in the autumn of the previous year and the spring of the current year. An overall RDA revealed that 63.9% of tree growth variation in larch species was explained by the considered weather variables (F = 4.925,p< 0.001). The pointer year analysis distinguished between several common extreme pointer years by larch species; it revealed a significant response to the winter temperature and the temperature in spring. However, these weather characteristics are very complex and the causes that can affect tree growth may vary from year to year.


2014 ◽  
Vol 11 (2) ◽  
pp. 2537-2568 ◽  
Author(s):  
A. Rammig ◽  
M. Wiedermann ◽  
J. F. Donges ◽  
F. Babst ◽  
W. von Bloh ◽  
...  

Abstract. Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Effects of this kind are often manifested in reductions of the local net primary production (NPP). Investigating a set of European long-term data on annual radial tree growth confirms this pattern: we find that 53% of tree ring width (TRW) indices are below one standard deviation, and up to 16% of the TRW values are below two standard deviations in years with extremely high temperatures and low precipitation. Based on these findings we investigate if climate driven patterns in long-term tree growth data may serve as benchmarks for state-of-the-art dynamic vegetation models such as LPJmL. The model simulates NPP but not explicitly the radial tree ring growth, hence requiring a generic method to ensure an objective comparison. Here we propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP). We find that the reduction in tree-ring width during drought extremes is lower than the corresponding reduction of simulated NPP. We identify ten extreme years during the 20th century in which both, model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to extreme events. One explanation for this discrepancy could be that the tree-ring data have preferentially been sampled at more climatically stressed sites. The model-data difference is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses at landscape or regional scale. However, we find that both model-data and measurements display carry-over effects from the previous year. We conclude that using radial tree growth is a good basis for generic model-benchmarks if the data are analyzed by scale-free measures such as coincidence analysis. Our study shows strong reductions in carbon sequestration during extreme years. However, for a better understanding of the impact of extreme events on e.g. the long-term fate of the European carbon balance, more long-term measurement data and improved process-based models are needed.


2007 ◽  
Vol 7 ◽  
pp. 231-239 ◽  
Author(s):  
Matthias Dobbertin ◽  
Beat Wermelinger ◽  
Christof Bigler ◽  
Matthias Bürgi ◽  
Mathias Carron ◽  
...  

In the dry Swiss Rhone Valley, Scots pine forests have experienced increased mortality in recent years. It has commonly been assumed that drought events and bark beetles fostered the decline, however, whether bark beetle outbreaks increased in recent years and whether they can be linked to drought stress or increasing temperature has never been studied.In our study, we correlated time series of drought indices from long-term climate stations, 11-year mortality trends from a long-term research plot, and mortality probabilities modeled from tree rings (as an indicator of tree vitality) with documented occurrences of various bark beetle species and a buprestid beetle, using regional Forest Service reports from 1902 to 2003 and advisory cases of the Swiss Forest Protection Service (SFPS) from 1984 to 2005. We compared the historical findings with measured beetle emergence from a 4-year tree felling and breeding chamber experiment.The documented beetle-related pine mortality cases increased dramatically in the 1990s, both in the forest reports and the advisory cases. The incidents of beetle-related pine mortality correlated positively with spring and summer temperature, and with the tree-ring-based mortality index, but not with the drought index. The number of advisory cases, on the other hand, correlated slightly with summer drought index and temperature, but very highly with tree-ring–based mortality index. The tree-ring-based mortality index and observed tree mortality increased in years following drought. This was confirmed by the beetle emergences from felled trees. Following dry summers, more than twice as many trees were colonized by beetles than following wet summers.We conclude that increased temperatures in the Swiss Rhone Valley have likely weakened Scots pines and favored phloeophagous beetle population growth. Beetles contributed to the increased pine mortality following summer drought. Among the factors not addressed in this study, changed forest use may have also contributed to increased beetle populations and Scots pine mortality, whereas air pollution seems to be of lesser importance.


2015 ◽  
Vol 12 (2) ◽  
pp. 373-385 ◽  
Author(s):  
A. Rammig ◽  
M. Wiedermann ◽  
J. F. Donges ◽  
F. Babst ◽  
W. von Bloh ◽  
...  

Abstract. Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Such effects are often manifested in reductions in net primary productivity (NPP). Investigating a Europe-wide network of annual radial tree growth records confirms this pattern: we find that 28% of tree ring width (TRW) indices are below two standard deviations in years in which extremely low precipitation, high temperatures or the combination of both noticeably affect tree growth. Based on these findings, we investigate possibilities for detecting climate-driven patterns in long-term TRW data to evaluate state-of-the-art dynamic vegetation models such as the Lund-Potsdam-Jena dynamic global vegetation model for managed land (LPJmL). The major problem in this context is that LPJmL simulates NPP but not explicitly the radial tree growth, and we need to develop a generic method to allow for a comparison between simulated and observed response patterns. We propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP). We find a relative reduction of 34% in simulated NPP during precipitation, temperature and combined extremes. This reduction is comparable to the TRW response patterns, but the model responds much more sensitively to drought stress. We identify 10 extreme years during the 20th century during which both model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to climatic extreme events. One explanation for this discrepancy could be the tendency of tree ring data to originate from climatically stressed sites. The difference between model and observed data is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses on landscape or regional scales. We find that both simulation results and measurements display carry-over effects from climate anomalies during the previous year. We conclude that radial tree growth chronologies provide a suitable basis for generic model benchmarks. The broad application of coincidence analysis in generic model benchmarks along with an increased availability of representative long-term measurements and improved process-based models will refine projections of the long-term carbon balance in terrestrial ecosystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena A. Babushkina ◽  
Dmitry R. Dergunov ◽  
Liliana V. Belokopytova ◽  
Dina F. Zhirnova ◽  
Keshav K. Upadhyay ◽  
...  

Dendroclimatic research offers insight into tree growth–climate response as a solution to the forward problem and provides reconstructions of climatic variables as products of the reverse problem. Methodological developments in dendroclimatology have led to the inclusion of a variety of tree growth parameters in this field. Tree-ring traits developed during short time intervals of a growing season can potentially provide a finer temporal scale of both dendroclimatic applications and offer a better understanding of the mechanisms of tree growth reaction to climatic variations. Furthermore, the transition from classical dendroclimatic studies based on a single integral variable (tree-ring width) to the modern multitude of quantitative variables (e.g., wood anatomical structure) adds a lot of complexity, which mainly arises from intrinsic feedbacks between wood traits and muddles seasonality of registered climatic signal. This study utilized life-long wood anatomical measurements of 150- to 280-year-old trees of Pinus sylvestris L. growing in a moisture-sensitive habitat of the forest-steppe of Southern Siberia (Russia) to investigate and eliminate legacy effect from cell production in tracheid traits. Anatomical parameters were calculated to describe the results of the three main subsequent stages of conifer xylem tracheid development, namely, cell number per radial file in the ring, mean and maximum cell radial diameter, and mean and maximum cell-wall thickness. Although tree-ring width was almost directly proportional to cell number, non-linear relationships with cell number were revealed in tracheid measurements. They exhibited a stronger relationship in the areas of narrow rings and stable anatomical structure in wider rings. The exponential models proposed in this study demonstrated these relationships in numerical terms with morphometric meaning. The ratio of anatomical measurements to their modeled values was used to develop long-term anatomical chronologies, which proved to retain information about climatic fluctuations independent of tree-ring width (cell number), despite decreased common signal.


2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Iriwi Louisa S. Sinon

<p><em>Study dendrochronology or tree-ring dating is defined as the study of chronological sequence of annual growth rings in trees. Teak (Tectona grandis) is one of various tree species that has been identified for the use of tree-ring studies in tropical regions. Teak is found to be suitable for dendrochronology as it is long-lived and develops defined annual growth rings. In Java, teak cans growth naturally or intensively in plantation. The two silviculture conditions will give different sensitivity on climate effect. Therefore, the effect of silviculturer will on natural teak and plantation teak in Saradan, Madiun, and East Java. As a part of the study, ten core samples from natural- growth teak were measured. The samples of growth rings is spanned from 1832 – 2004. Using the COFECHA program, the correlation of the samples (r) was found to be 0.44 point, which is satisfactory to the standard used in dendrochronology. Thus, from this study it can be concluded that natural teak could still be used in dendrochronology, although the sensitivity are not as high as plantation teak. </em></p>


Sign in / Sign up

Export Citation Format

Share Document