Electrodialysis
Latest Publications


TOTAL DOCUMENTS

7
(FIVE YEARS 7)

H-INDEX

1
(FIVE YEARS 1)

Published By Intechopen

9781839683824, 9781839683831

Author(s):  
Jonathan Deseure ◽  
Jérôme Aicart

The hydrogen production by SOECs coupled with renewable energy sources is a promising route for the sustainability hydrogen economy. Multiphysics computing simulations appear to be the most efficient approaches to analyze the coupled mechanisms of SOEC operation. Using a relevant model, it is possible to predict the electrical behavior of solid oxide electrodes considering the current collector design. The influences of diffusion and grain diameter on cell performances can be investigated through 2D simulations, current–voltage characteristics, and current source distribution through electrodes. The simulation results emphasize that diffusion is linked to a relocation of the reaction away from the interface electrolyte/electrode, in the volume of the cathode. Furthermore, the current collector proves itself to be a great obstacle to gas access, inducing underneath it a shortage of steam. Inducing gradients of grain diameters in both anode and cathode drives the current sources to occur close to the electrode/electrolyte interface, thus decreasing ohmic losses and facilitating gas access. This approach shows the crucial importance of cathode microstructure as this electrode controls the cell response.


2020 ◽  
Author(s):  
Juvenal Rocha Dias ◽  
Eliane Aparecida Faria Amaral Fadigas

This chapter proposes an alternative system for conventional reverse osmosis (RO) and electrodialysis (ED) desalination plants by incorporating the use of gravitational potential energy (GPE). The proposed system is devised with two subsystems, the RO module followed by the ED module, both simultaneously powered by GPE. This kind of energy is obtained by storing the brackish water to be desalinated. The system’s primary source of energy is wind. Windmills harness the wind energy to pump water to a reservoir located at a certain height (<20 m). The stored water has the GPE that will make a special plunger pump work. The piston of this special plunger pump is designed so that high pressure (about 15 bar) can be achieved in a different way from conventional RO plants. In the alternative system, here proposed, to pump water to the RO membranes, the special pistons go downward due to their own weight and are lifted, through a system of pulleys, with a counterweight filled with water obtained from the reservoir. The technical viability of the alternatives was theoretically proven by deductions based on physics and mathematics and with a special plunger pump prototype that worked successfully.


2020 ◽  
Author(s):  
Birsen Cevher-Keskin

The functional organization of eukaryotic cells requires the exchange of proteins, lipids, and polysaccharides between membrane compartments through transport intermediates. Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Transport from one compartment of this pathway to another is mediated by vesicular carriers, which are formed by the controlled assembly of coat protein complexes (COPs) on donor organelles. The activation of small GTPases is essential for vesicle formation from a donor membrane. In eukaryotic cells, small GTP-binding proteins comprise the largest family of signaling proteins. The ADP-ribosylation factor 1 (ARF1) and secretion-associated RAS superfamily 1 (SAR1) GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in coat protein complex I (COPI)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular coat protein complex II (COPII)-mediated protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. The dysfunction of the endomembrane system can affect signal transduction, plant development, and defense. This chapter offers a summary of membrane trafficking system with an emphasis on the role of GTPases especially ARF1, SAR1, and RAB, their regulatory proteins, and interaction with endomembrane compartments. The vacuolar and endocytic trafficking are presented to enhance our understanding of plant development and immunity in plants.


2020 ◽  
Author(s):  
Jorge Alberto Mendoza Pérez ◽  
Abril Gardenia Martínez Castillo ◽  
Jorge Octaviano Gomez Castrejon ◽  
Juan Carlos Gómez Buendía

In this chapter, we report previous results about advances of an electrolysis process developed for breakdown of endocrine disrupting drugs in aqueous media. The objective is to achieve the breakdown of two drugs: trimethoprim and a mixture of clavulanic acid-amoxicillin (1:7) with an electrolytic cell by means of oxidization-reduction reactions. The evaluation of the process was carried out using spectrometry techniques UV-Vis, thin layer chromatography (TLC), chemical oxygen demand (COD), and total organic carbon (TOC). Handcrafted mineral carbon electrodes doped with titanium dioxide were designed, platinum and copper wires were placed, and a potassium hydroxide solution was used as electrolyte. The electrolyte, being an alkaline salt, allows the transport of charges from one side to the other, and electrode doped with titanium dioxide is used in order to help the electronic transfer, and the mineral carbon, having a strong affinity for organic and non-polar compounds, performs an adsorption process. Results from several performed assays showed that after 1 hour of treatment, it can be seen the breakdown of the drugs present in a synthetic wastewater solution.


2020 ◽  
Author(s):  
Taner Yonar

In most cases traditional and advanced treatment technologies transfers and concentrates the pollutants from one phase to other phase. However, nowadays, these concentrated flows containing heavy pollution are rapidly moving away from being manageable. In particular, membrane concentrate flows await immediate solutions to this issue. Electrodialysis Bipolar Membrane (EDBM) Processes are becoming a serious and potential solution technique for similar concentrate streams. In this chapter, principles and potentials of EDBM processes for the recycling or recovery of membrane concentrates are discussed.


2020 ◽  
Author(s):  
Noureddine Toujani ◽  
Nahla Bouaziz ◽  
Lakder Kairouani

The new ORC-VCC combined system is analyzed. It is a new system that can be operated in four modes depending on the type of energy. The novelty of the system appears essentially in the development of new ORC-VCC combination architecture, the lowering of the condensation temperature, the possibility of cold production by the ORC cycle affected by the pumping phase, preheating of fluid cycle using the VCC cycle fluid, and new configurations based on the integration of heat recovery systems to improve overall system performance. In addition, each installation mode has several configurations depending on the recovery points that will be integrated later, besides its adaptation to any energy source, where we can use biomass, solar, and heat rejects of industry at low temperatures (60–130°C). This system can produce under and above zero temperature. Although, due to its architecture, it is also characterized by many combination of selection fluid for the ORC and VCC cycles, it is not necessary to have the same working fluid as in the classic systems. In this study, three configurations are examined and studied in terms of energy efficiency mainly the performance of each configuration including net power, refrigeration capacity and overall efficiency, the thermal efficiency for ORC.


2020 ◽  
Author(s):  
Biman Gati Gupta

The present study attempts to assess the nature of effluents generated from textile bleaching and dyeing units located at Kalikapur area under Maheshtala region, West Bengal, India and to provide a sustainable management of ground water resources through installing CETPs with zero liquid discharge system. Effluent from medium, small and tiny units of this region is estimated at 2000 MLD. Studies with 40 units for 4 years (2012—2016) located in this area exhibited following mean values of different physic-chemical variables: pH (9), Biological Oxygen Demand (610 Mg/L), Chemical Oxygen Demand (1827 Mg/L), Total Dissolved Solids (6411 Mg/L), Total Suspend Solids (927 Mg/L) and toxic metals such as lead Pb (0.43 Mg/L), Chromium (0.031 Mg/L), Zinc (0.74 Mg/L), Nickel (0.07 Mg/L) and Cadmium (0.03 Mg/L). These finding of results surpass the standard allowable limits qualify by FAO (1985) and World Health Organization (2003). The waste water loaded with toxic trace metals is adversely affecting the environmental pollution and anthropomorphic eudemonia and also pollute the quality of both surface and ground water and consequently degraded agricultural and plant yield, vegetable and fruits and causes impairment to aquatic lives. Four to five Common Effluent Treatment Plants are urgently required to install at different areas of the Maheshtala cluster with a capacity of 500 MLD each, so that one in Kalikapur area, to manage sizeable volume of waste water (2000 MLD) and sustainable management of ground water resources in a thickly populated urban area near Calcutta, a principal city of India.


Sign in / Sign up

Export Citation Format

Share Document