scholarly journals Endomembrane Trafficking in Plants

2020 ◽  
Author(s):  
Birsen Cevher-Keskin

The functional organization of eukaryotic cells requires the exchange of proteins, lipids, and polysaccharides between membrane compartments through transport intermediates. Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Transport from one compartment of this pathway to another is mediated by vesicular carriers, which are formed by the controlled assembly of coat protein complexes (COPs) on donor organelles. The activation of small GTPases is essential for vesicle formation from a donor membrane. In eukaryotic cells, small GTP-binding proteins comprise the largest family of signaling proteins. The ADP-ribosylation factor 1 (ARF1) and secretion-associated RAS superfamily 1 (SAR1) GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in coat protein complex I (COPI)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular coat protein complex II (COPII)-mediated protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. The dysfunction of the endomembrane system can affect signal transduction, plant development, and defense. This chapter offers a summary of membrane trafficking system with an emphasis on the role of GTPases especially ARF1, SAR1, and RAB, their regulatory proteins, and interaction with endomembrane compartments. The vacuolar and endocytic trafficking are presented to enhance our understanding of plant development and immunity in plants.

2019 ◽  
Vol 78 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Abdul Razaque Memon ◽  
Christiane Katja Schwager ◽  
Karsten Niehaus

Abstract In this study we used Medicago truncatula, to identify and analyze the expression of small GTP-binding proteins (Arf1, Arl1, Sar1, Rabs, Rop/Rac) and their interacting partners in the infection process in the roots and nodules. A real-time polymerase chain reaction analysis was carried out and our results showed that Arf1 (AtArfB1c-like), MtSar1, AtRabA1e-like, AtRabC1-like, MsRab11-like and AtRop7-like genes were highly expressed in the nodules of rhizobium inoculated plants compared to the non-inoculated ones. On the contrary, AtRabA3 like, AtRab5c and MsRac1-like genes were highly expressed in non-infected nitrogen supplied roots of M. truncatula. Other Rab genes (AtRabA4a, AtRabA4c and AtRabG3a-like genes) were nearly equally expressed in both treatments. Interestingly, RbohB (a respiratory burst NADPH oxidase homologue) was more highly expressed in rhizobium infected than in non-infected roots and nodules. Our data show a differential expression pattern of small GTP-binding proteins in roots and nodules of the plants. This study demonstrates an important role of small GTP-binding proteins in symbiosome biogenesis and root nodule development in legumes.


1994 ◽  
Vol 126 (4) ◽  
pp. 1005-1015 ◽  
Author(s):  
J C Norman ◽  
L S Price ◽  
A J Ridley ◽  
A Hall ◽  
A Koffer

Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells.


2012 ◽  
Vol 3 (6) ◽  
pp. 561-570 ◽  
Author(s):  
Irmgard Schuiki ◽  
Allen Volchuk

AbstractMembers of the p24 protein family form a highly conserved family of type I transmembrane proteins that are abundant components of the early secretory pathway. Topologically, the proteins have a large luminal domain and a short cytoplasmic domain that allows for targeting to both coat protein complex II and coat protein complex I vesicles, and thus these proteins cycle between the endoplasmic reticulum and Golgi compartments. Several functions have been proposed for these proteins including a role in coat protein complex I vesicle biogenesis, cargo protein selection, organization of intracellular membranes, and protein quality control. Recent studies have added to the list of potential cargo substrates for which p24 function is required for normal transport in the secretory pathway. This review focuses on recent developments in the study of p24 proteins and their requirement for secretory and membrane protein transport in eukaryotic cells.


1993 ◽  
Vol 340 (1293) ◽  
pp. 267-271 ◽  

Rho-related proteins are members of the ras superfamily of small GTP-binding proteins. Their function in fibroblasts has been analysed using microinjection of living cells. Rho appears to link plasma membrane receptors to the assembly of focal adhesions and actin stress fibres. The closely related protein rac, on the other hand, links receptors to the polymerization of actin at the plasma membrane to form membrane ruffles and pinocytotic vesicles. In phagocytic cells, rac has been shown to be required for activation of a membrane-bound NADPH oxidase in response to receptor activation. These systems provide the basis for a working model for the mechanism of action of the rho family of small GTPases.


2020 ◽  
Vol 295 (25) ◽  
pp. 8401-8412 ◽  
Author(s):  
David B. Melville ◽  
Sean Studer ◽  
Randy Schekman

Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.


1996 ◽  
Vol 7 (9) ◽  
pp. 1429-1442 ◽  
Author(s):  
J C Norman ◽  
L S Price ◽  
A J Ridley ◽  
A Koffer

In mast cells, activation of GTP-binding proteins induces centripetal reorganization of actin filaments. This effect is due to disassembly, relocalization, and polymerization of F-actin and is dependent on two small GTPases, Rac and Rho. Activities of Rac and Rho are also essential for the secretory function of mast cells. In response to GTP-gamma-S and/or calcium, only a proportion of permeabilized mast cells is capable of secretory response. Here, we have compared actin organization of secreting and nonsecreting cell populations. We show that the cytoskeletal and secretory responses are strongly correlated, indicating a common upstream regulator of the two functions. The secreting cell population preferentially displays both relocalization and polymerization of actin. However, when actin relocalization or polymerization is inhibited by phalloidin or cytochalasin, respectively, secretion is unaffected. Moreover, the ability of the constitutively active mutants of Rac and Rho to enhance secretion is also unaffected in the presence of cytochalasin. Therefore, Rac and Rho control these two functions by divergent, parallel signaling pathways. Cortical actin disassembly occurs in both secreting and nonsecreting populations and does not, by itself, induce exocytosis. A model for the control of exocytosis is proposed that includes at least four GTP-binding proteins and suggests the presence of both shared and divergent signaling pathways from Rac and Rho.


1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


Sign in / Sign up

Export Citation Format

Share Document