Optimal Design of a Ship Multitasking Cabin Layout Based on the Interval Optimization Method

Author(s):  
Haonan Li ◽  
Yuanhang Hou ◽  
Wei Chen ◽  
Tu Yu ◽  
Yulong Hu ◽  
...  
2012 ◽  
Vol 61 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Norio Takahashi ◽  
Shunsuke Nakazaki ◽  
Daisuke Miyagi ◽  
Naoki Uchida ◽  
Keiji Kawanaka ◽  
...  

3-D optimal design of laminated yoke of billet heater for rolling wire rod using ON/OFF method The optimization method using the ON/OFF sensitivity analysis has an advantage that an epoch-making construction of magnetic circuit may be obtained. Therefore, it is attractive for designers of magnetic devices. We have already developed the ON/OFF method for the optimization of a static magnetic field problem, and the effectiveness is verified by applying it to the optimization of magnetic recording heads. In this paper, the ON/OFF sensitivity method is extended to the optimization of the eddy current problem using the adjoint variable. The newly developed ON/OFF method is applied to the determination of the optimal topology of the yoke of the billet heater for rolling wire rod. As a result, the optimal shape of yoke, which we could not imagine beforehand can be obtained. It is shown that the local heating of the yoke was reduced without decreasing the heating efficiency.


Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


Author(s):  
Ryohei Yokoyama ◽  
Yuji Shinano ◽  
Yuki Wakayama ◽  
Tetsuya Wakui

To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) approaches have been applied widely to such optimal design problems. The authors have proposed a MILP method utilizing the hierarchical relationship between design and operation variables to solve the optimal design problems of energy supply systems efficiently. In addition, some strategies to enhance the computation efficiency have been adopted: bounding procedures at both the levels and ordering of the optimal operation problems at the lower level. In this paper, as an additional strategy to enhance the computation efficiency, parallel computing is adopted to solve multiple optimal operation problems in parallel at the lower level. In addition, the effectiveness of each and combinations of the strategies adopted previously and newly is investigated. This hierarchical optimization method is applied to an optimal design of a gas turbine cogeneration plant, and its validity and effectiveness are clarified through some case studies.


2018 ◽  
Vol 29 (18) ◽  
pp. 3648-3655 ◽  
Author(s):  
Mohammad Mehdi Naserimojarad ◽  
Mehrdad Moallem ◽  
Siamak Arzanpour

Magnetorheological dampers have been used in automotive industry and civil engineering applications for shock and vibration control for some time. While such devices are known to provide reliable shock and vibration suppression, there exist emerging applications in which the magnetorheological dampers have to be optimized in terms of power consumption and overall weight (e.g. energy-efficient electric vehicles). Utilizing traditional optimal design approaches to tackle those issues can sometimes lead to convergence problems such as getting trapped in a local extremum and failing to converge to the global optimum. Furthermore, manufacturing limitations are usually not taken into account in the optimization process which may hamper achieving an optimal design. In this article, we present a method for optimal design of magnetorheological dampers by utilizing mathematical optimization and finite element analysis. The proposed method avoids infeasible solutions by considering physical constraints such as fabrication limitations and tolerances. This approach takes every single feasible solution into account so that the final solution would be the global extremum of the optimization cost function. The proposed approach is applied to optimize a complex magnetorheological damper structure with different types of materials such as steel and AlNiCo. In particular, we present the design of a valve-mode magnetorheological damper with AlNiCo integrated as its core. A magnetorheological damper prototype is manufactured based on the proposed optimization method and tested experimentally.


2018 ◽  
Vol 10 (10) ◽  
pp. 3762 ◽  
Author(s):  
Abel Tablada ◽  
Vesna Kosorić ◽  
Huajing Huang ◽  
Ian Chaplin ◽  
Siu-Kit Lau ◽  
...  

Singapore’s high dependence on imported energy and food resources, and the lack of available land requires an efficient use of the built environment in order to increase energy and food autonomy. This paper proposes the concept of a productive façade (PF) system that integrates photovoltaic (PV) modules as shading devices as well as farming planters. It also outlines the design optimization process for eight PF prototypes comprising two categories of PF systems: Window façade and balcony façade, for four orientations. Five criteria functions describing the potential energy and food production as well as indoor visual and thermal performance were assessed by a parametric modelling tool. Optimal PF prototypes were subsequently obtained through the VIKOR optimization method, which selects the optimal design variants by compromising between the five criteria functions. East and West-facing façades require greater solar protection, and most façades require high-tilt angles on their shading PV panels. The optimal arrangement for vegetable planters involves two planters located relatively low with regard to the railing or window sill. Finally, the optimal façade designs were adjusted according to the availability of resources and the conditions and context of the Tropical Technologies Laboratory (T2 Lab) in Singapore where they are installed.


2019 ◽  
Vol 9 (20) ◽  
pp. 4267
Author(s):  
Chien Yang Huang ◽  
Tai Yan Kam

A new and effective elastic constants identification technique is presented to extract the elastic constants of a composite laminate subjected to uniaxial tensile testing. The proposed technique consists of a new multi-level optimization method that can solve different types of minimization problems, including the extraction of material constants of composite laminates from given strains. In the identification process, the optimization problem is solved by using a stochastic multi-start dynamic search minimization algorithm at the first level in order to obtain the statistics of the quasi-optimal design variables for a set of randomly generated starting points. The statistics of the quasi-optimal elastic constants obtained at this level are used to determine the reduced feasible region in order to formulate the second-level optimization problem. The second-level optimization problem is then solved using the particle swarm algorithm in order to obtain the statistics of the new quasi-optimal elastic constants. The iteration process between the first and second levels of optimization continues until the standard deviations of the quasi-optimal design variables at any level of optimization are less than the prescribed values. The proposed multi-level optimization method, as well as several existing global optimization algorithms, is used to solve a number of well-known mathematical minimization problems to verify the accuracy of the method. For the adopted numerical examples, it has been shown that the proposed method is more efficient and effective than the adopted global minimization algorithms to produce the exact solutions. The proposed method is then applied to identify four elastic constants of a [0°/±45°]s composite laminate using three strains in 0°, 45°, and 90° directions, respectively, of the composite laminate subjected to uniaxial testing. For comparison purposes, several existing global minimization techniques are also used to solve the elastic constants identification problem. Again, it has been shown that the proposed method is capable of producing more accurate results than the adopted available methods. Finally, experimental data are used to demonstrate the applications of the proposed method.


1983 ◽  
Vol 4 (4) ◽  
pp. 381-394 ◽  
Author(s):  
Vilas Wuwongse ◽  
Shigenobu Kobayashi ◽  
Shin-ichi Iwai ◽  
Atsunobu Ichikawa

Sign in / Sign up

Export Citation Format

Share Document