Technology-Assisted Problem Solving for Engineering Education - Advances in Information and Communication Technology Education
Latest Publications


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By IGI Global

9781605667645, 9781605667652

Author(s):  
Manjit Singh Sidhu ◽  
Youngkyun Baek

This chapter expands upon the definition of a simulation with two categories: experiential and symbolic. It discusses the interactive, experiential trend in digital teaching and learning, and the educational merits of simulations. This chapter tries to locate digital simulation’s position in these trends. In doing so, it explores the educational merits of digital simulation, discusses the learning mode of digital simulation, and outlines what digital simulation conveys to deliver educational contents. In addition, it will look at the characteristics and functions of digital simulation. Mainly this chapter focuses on how simulation is used for teaching and learning. It highlights simulation’s features to be effective for teaching and learning. It also introduces challenges to simulation to overcome its disadvantages. Several examples of digital simulation in teaching and learning are explored: They are “Max Trax, Strategy CoPilot, Virtual School, simSchool, simClass, Krucible”, and “Starry Night”. Lastly, this chapter seeks to forecast the future of teaching and learning with a focus on information technology and simulation by finding simulation’s role and contribution in learning context.


Author(s):  
Manjit Singh Sidhu ◽  
Pilar Alejandra Cortés Pascual

Educational orientation should be set within a specific socio-historical context, which is nowadays characterized by the Society of Information. From this starting point, we think that the understanding of both an ethical analysis of technology as well as of the means of communication, which individuals will have to deal with in their professional development, must be considered as content linked to professional orientation. This idea becomes more definite in the concept of educational technoethics and it is studied from two parameters: the intrinsic values that technology and the means of communication include (the aim of technoethics) and their use as mediators of ethical values (means of technoethics). Therefore, the proposal that is currently being implemented in the project “Observation Laboratory on Technoethics for Adults” (LOTA) as well as its implications for professional orientation are concisely presented from both points of view. The present text is a review and update of a previously published article (Cortés, 2006).1


Author(s):  
Manjit Singh Sidhu

It can be envisaged that the use of multimedia computer technology as replacement, or supplement to, human educators in engineering education would become widespread in the future. Such technology can be employed to demonstrate and correlate real life application and theory thereby promoting deep learning. Interactive courseware for higher learning institutions may be extremely useful where trained human resources in the engineering education sector are limited. This Chapter discusses the current trends of incorporating new technologies with TAPS packages in the teaching of engineering subjects.


Author(s):  
Manjit Singh Sidhu

This Chapter discusses the effectiveness of TAPS packages and provides a brief account of the differences between the approach of the TAPS packages used in this study with that of commercial simulation packages accompanying the Engineering Mechanics Dynamics textbook.


Author(s):  
Manjit Singh Sidhu

The literature shows that many different evaluation methodologies for computer aided learning (CAL) packages have been proposed based on different philosophical views (Worthen and Sanders, 1973; Popham, 1974; Stephen and Stanley, 1985). The evaluation may be used for a variety of purposes such as refining goals, defining products or programs, and estimating costs, usability and effectiveness (Reeves, 1993). This involves the systematic review of the content, design, and instructional value and worth of computer aided learning packages. In general, any instructional software package should be evaluated before it is delivered or used in the classroom or research laboratory. This Chapter provides some general evaluation techniques used in the evaluation of such packages.


Author(s):  
Manjit Singh Sidhu

Mechanical engineering course subjects such as Mechanics Dynamics, combine a mix use of mathematics, schematic diagrams, and text descriptions. Frequently, students are unclear of basic principles of Engineering Mechanics Dynamics, and as such they do not know which mathematical relationships are to be applied in solving a particular problem. Additionally, as the name “dynamics” implies, the very nature of this subject is not “static” and thus requires learners to visualize motion; for example, in a given time period, a particle may be moving in a straight line and after some seconds the particle may experience a curvilinear motion. If the learner fails to see this, the learner will not be able to employ the right equations to solve the problem. As such, an effort was made to evaluate the feasibility and effectiveness of employing technologies such as multimedia and desktop virtual reality to enhance the problem solving skills and learning of students. In this book, the development of computer-aided learning software termed as technology assisted problem solving (TAPS) packages is demonstrated in Chapter 7. The book provided an overview of developing TAPS packages using multi design approaches. The work is one of the pioneering efforts to address the need for computer based problem solving software packages for the domain of engineering. The development processes of TAPS packages are shown in (Figure 1). More specifically, the conclusions of the study are as follows.


Author(s):  
Manjit Singh Sidhu

The evaluation was carried out to examine the distribution of learning styles (discussed in Chapter 2) of the third year undergraduate engineering students and suggest effective problem solving approaches that could increase the motivation and understanding of slow learners at UNITEN. For this study, a sample target population of 60 third year undergraduate engineering students who had taken the Engineering Mechanics subject was tested. These students were selected based on their second year grade point average (GPA) of less than 2.5 as this study emphasizes on slow learners.


Author(s):  
Manjit Singh Sidhu

The Mechanical Engineering course is largely based on practical skills and requires the acquisition of basic skills and domain knowledge before applying them on real problems. In order to design and develop a technology assisted problem solving (TAPS) package particularly to guide students in learning and solving engineering problems, it is necessary to be acquainted with its development and its process of realization in practical terms in computer software. User interface design has been applied in learning environments as discussed in previous Chapter 3. Therefore it is informative to discover the extent to which they help engineering students in their learning and thereby be incorporated in TAPS packages. This examination includes an overview of good practice in the positioning and operation of navigational features, visual screen presentation, the nature of presentation, help and feedback and views on the role of the learner in using the TAPS packages. This Chapter discusses the need to learn practical Mechanical Engineering skills and reviews the tutorial and situational learning approaches. Additionally the Chapter provides an overview of TAPS packages and the approach adopted for problem solving and student learning.


Author(s):  
Manjit Singh Sidhu

In general, Computer Aided Learning (CAL) is the term given to software applications in which a computer is used to partially replace the function of a human instructor in the education or training of a learner/student. CAL is not limited to a particular field in education or constraint to a specific subject matter. The primary goal of CAL is to convey pre-defined theory/concepts to student so as to allow him/ her to understand and apply gained knowledge at work place. A CAL application offers the student a structured method of obtaining information as well as using the computer as navigational and information retrieval medium. CAL can therefore be thought of as a front end to a large information database. Early CAL packages offered the user information in the form of pages of text only. As technology evolved, applications started to present information using a wide range of media formats, including high-resolution graphics, narration, and even interactive video (Marshall, 1988). Hence the combination of one or more electronic media is subsequently known as multimedia.


Author(s):  
Manjit Singh Sidhu

Interface design provides the practical information for the multimedia author to develop well-designed and usable interfaces. However, the design of the user interface for any learning package involves many interacting concerns. The developer of such a package needs to consider the tasks to be achieved using the particular learning package. Although most learning package developers may use their own choices to develop the package, various approaches to user interface design has been proposed by standardization bodies (e.g. ISO, CEC/CENELEC, BSI) to provide the basic mechanisms for developing, promoting and imposing standards in the user interface in designing learning packages (Hutchins 1987; Ianella, 1992, Pangalos, 1993; Deborah, 1997; Plass, 1998; and Carter 2002). Unfortunately, many learning package developers do not use a common standard user interface design when designing a learning package. This Chapter reviews some approaches that are available to learning package developers and suggestions for user interface design.


Sign in / Sign up

Export Citation Format

Share Document