Chronic myelogenous leukemia. Development of blast crisis with both lymphoid and myeloid features

JAMA ◽  
1983 ◽  
Vol 250 (21) ◽  
pp. 2957-2960 ◽  
Author(s):  
K. M. Skubitz
1989 ◽  
Vol 1 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Robert Pirker ◽  
Lori J. Goldstein ◽  
Heinz Ludwig ◽  
Werner Linkesch ◽  
Christina Lechner ◽  
...  

PEDIATRICS ◽  
1984 ◽  
Vol 73 (3) ◽  
pp. 324-326
Author(s):  
Reese H. Clark ◽  
Leslie L. Taylor ◽  
Robert J. Wells

The case of a patient with ecchymosis, hepatomegaly, leukocytosis, thrombocytopenia, and anemia at birth is presented. Throughout his course, thrombocytopenia, anemia, and leukocytosis without a marked increase in the number of blast forms in either peripheral blood or bone marrow persisted until the patient developed a blast crisis shortly before his death at age 4 months. This patient is the youngest reported to have the juvenile form of chronic myelogenous leukemia and the first that in the present era can be considered congenital in origin.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3449-3456 ◽  
Author(s):  
C Wada ◽  
S Shionoya ◽  
Y Fujino ◽  
H Tokuhiro ◽  
T Akahoshi ◽  
...  

Abstract Tumorigenesis has been shown to proceed through a series of genetic alterations involving protooncogenes and tumor-suppressor genes. Investigation of genomic instability of microsatellites has indicated a new mechanism for human carcinogenesis in hereditary nonpolyposis colorectal cancer and sporadic cancer and this instability has been shown to be related to inherited predisposition to cancer. This study was conducted to determine whether such microsatellite instability is associated with the evolution of chronic myelogenous leukemia (CML) to the blast crisis. Nineteen CML patients clinically progressing from the chronic phase to accelerated phase or blast crisis and 20 other patients in the CML chronic phase were studied. By polymerase chain reaction assay, DNAs for genomic instability in five separate microsatellites in chromosome arms 5q (Mfd27), 17p (Mfd41), 18q (DCC), 3p (CI3–9), and 8p (LPL) were examined. Differences in unrelated microsatellites of chronic and blastic phase DNAs in 14 of 19 patients (73.7%) were demonstrated. Somatic instability in five microsatellites, Mfd27, Mfd41, DCC, CI3–9, and LPL, was detected in 2 of 19 (10.5%), 8 of 19 (42.1%), 11 of 19 (57.9%), 4 of 17 (23.5%), and 4 of 17 (23.5%) cases. In 10 of 19 cases (52.6%), genetic instability in at least two of five microsatellites was observed and was categorized as replication error (RER+) phenotype. CML evolution cases with myeloid, lymphoid, and mixed phenotypes and the blast crisis and accelerated phase showed somatic instability in a number of microsatellites. No alterations in leukemic cells at the chronic phase could be detected in any microsatellites. These data indicate instability of microsatellites (RER+) but not familial predisposition to possibly be a late genetic event in the evolution of CML to blast crisis. In the microsatellite of the DCC gene, complicated alterations in band patterns caused by instability as well as loss of heterozygosity (LOH) were observed in 13 of 19 cases (68.4%): instability in 9 cases, instability plus LOH in 2 cases, and only LOH in 2 cases. These highly frequent alterations in microsatellites, including instability and LOH, suggesting that secondary events due possibly to loss of fidelity in replication and repair machinery may be significantly associated with CML evolution.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2248-2254 ◽  
Author(s):  
J Miyauchi ◽  
M Asada ◽  
M Sasaki ◽  
Y Tsunematsu ◽  
S Kojima ◽  
...  

Juvenile chronic myelogenous leukemia (JCML), a myeloproliferative disorder of childhood, is distinct from adult-type chronic myelogenous leukemia (CML) and bears resemblance to chronic myelomonocytic leukemia (CMMoL). Since mutations in the N-ras gene have been found at high frequencies in CMMoL, but only rarely in CML, we analyzed mutations activating the N-ras gene in 20 patients with JCML. We used the strategy for analysis of gene mutations based on in vitro DNA amplification by polymerase chain reaction (PCR) followed by single- strand conformation polymorphism (SSCP) analysis and/or direct sequence analysis. Nucleotide sequence analysis showed single nucleotide substitutions involving codons 12, 13, or 61 in six of 20 patients (30%). Four of six patients with mutations were in chronic phase and the other two in blast crisis, indicating no apparent correlation with disease stage. Most of the patients with mutations were in the older age group with poor prognosis, although one patient in the younger age group also harbored the mutation. These data suggest that N-ras gene mutations may be involved in the pathogenesis and/or prognosis of JCML and provide further evidence that JCML is an entity distinct from CML.


2003 ◽  
Vol 42 (8) ◽  
pp. 740-742 ◽  
Author(s):  
Kotaro NAITO ◽  
Takehiko MORI ◽  
Keiko MIYAZAKI ◽  
Yuiko TSUKADA ◽  
Yasuo IKEDA ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Parikshit Padhi ◽  
Margarita Topalovski ◽  
Radwa El Behery ◽  
Eduardo S. Cantu ◽  
Ramadevi Medavarapu

Chronic Myelogenous Leukemia in blast crisis can manifest as either myeloid (more common) or lymphoid blast crisis. Most lymphoblastic crises are of B-cell lineage. T-cell blast crisis is extremely rare, with only a few reported cases. We present a case of a middle-aged man who was diagnosed with CML on peripheral blood and bone marrow biopsy. Because of a generalized lymphadenopathy noted at the time of diagnosis, a lymph node biopsy was also performed, which revealed a T-cell lymphoblastic leukemia/lymphoma, BCR/ABL1 positive, with clonal evolution. This is a very rare manifestation of CML in blast crisis with no standard treatment and with poor outcomes despite chemotherapy or allogeneic stem cell transplant. Given its rarity, it would be difficult to develop standard chemotherapy protocols. We believe the treatment for this condition should be similar to any lymphoid blast crisis. The patient was treated with induction chemotherapy (hyper-CVAD regimen) plus dasatinib for 3 cycles followed by sibling-donor allogeneic stem cell transplant and is currently on maintenance dasatinib and has minimal residual disease at this time.


2001 ◽  
Vol 19 (11) ◽  
pp. 2915-2926 ◽  
Author(s):  
Razelle Kurzrock ◽  
Carlos E. Bueso-Ramos ◽  
Hagop Kantarjian ◽  
Emil Freireich ◽  
Susan L. Tucker ◽  
...  

PURPOSE: To document the characteristics of patients with major breakpoint cluster region (M-bcr) rearrangement–negative chronic myelogenous leukemia (CML). PATIENTS AND METHODS: The hematopathologist, who was blinded to patients’ molecular status, reviewed the referral bone marrows and peripheral-blood smears from 26 patients with Philadelphia (Ph) translocation–negative CML who lacked Bcr rearrangement (and other evidence of a Bcr-Abl anomaly) and 14 patients (controls) with chronic-phase Ph-positive CML. Clinical data was ascertained by chart review. RESULTS: Among the 26 M-bcr rearrangement–negative CML patients, three pathologic subtypes emerged: (1) patients indistinguishable from classic CML (n = 9), (2) patients with atypical CML (n = 8), and (3) patients with chronic neutrophilic leukemia (n = 9). Among the 14 patients with Ph-positive CML who were included in the blinded review, 13 were classified as classic CML, and one was classified as atypical CML. The only statistically significant difference between M-bcr rearrangement–negative subgroups was in the proportion of patients having karyotypic abnormalities, an observation common only in patients with atypical CML (P = 0.008). However, the small number of patients in each subgroup limited our ability to differentiate between them. Interferon alfa induced complete hematologic remission in five of 14 patients; four of these remissions lasted more than 5 years. Only one of 26 patients developed blast crisis. The median survival of the 26 patients was 37 months. CONCLUSION: Patients with M-bcr rearrangement–negative CML fall into three morphologic subgroups. Disease evolution does not generally involve blastic transformation. Instead, patients show progressive organomegaly, leukocytosis, anemia, and thrombocytosis. Some patients in each subgroup can respond to interferon alfa.


Sign in / Sign up

Export Citation Format

Share Document