NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation

FEBS Letters ◽  
2016 ◽  
Vol 590 (16) ◽  
pp. 2797-2810 ◽  
Author(s):  
Ting Li ◽  
Xi Li ◽  
WenFei Zhu ◽  
HuiYu Wang ◽  
Lin Mei ◽  
...  
2013 ◽  
Vol 94 (5) ◽  
pp. 977-984 ◽  
Author(s):  
Rey Predicala ◽  
Yan Zhou

Influenza A virus vRNP nuclear export is CRM1-dependent. Ran-binding protein 3 (RanBP3) is a Ran-interacting protein that is best known for its role as a cofactor of CRM1-mediated cargo nuclear export. In this study, we investigated the role of RanBP3 during the influenza A virus life cycle. We found that RanBP3 was phosphorylated at Ser58 in the early and late phases of infection. Knockdown of RanBP3 expression led to vRNP nuclear retention, suggesting that RanBP3 is involved in vRNP nuclear export. Moreover, we demonstrated that the function of RanBP3 during vRNP nuclear export is regulated by phosphorylation at Ser58, and that RanBP3 phosphorylation is modulated by both PI3K/Akt and Ras/ERK/RSK pathways in the late phase of viral infection.


2015 ◽  
Vol 128 (7) ◽  
pp. 902-908 ◽  
Author(s):  
Zhi-Heng Xing ◽  
Xin Sun ◽  
Long Xu ◽  
Qi Wu ◽  
Li Li ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2409
Author(s):  
Anastasia A. Bizyaeva ◽  
Dmitry A. Bunin ◽  
Valeria L. Moiseenko ◽  
Alexandra S. Gambaryan ◽  
Sonja Balk ◽  
...  

Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5′- and 3′-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385–hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.


2016 ◽  
Vol 8 (17) ◽  
pp. 2017-2031 ◽  
Author(s):  
Simona Panella ◽  
Maria Elena Marcocci ◽  
Ignacio Celestino ◽  
Sergio Valente ◽  
Clemens Zwergel ◽  
...  

2021 ◽  
Author(s):  
Jing Wu ◽  
Jiaqi Gu ◽  
Li Shen ◽  
Xiaonan Jia ◽  
Yiqian Yin ◽  
...  

Influenza A virus (IAV) is a crucial cause of respiratory infections in humans worldwide. Therefore, studies should clarify adaptation mechanisms of IAV and critical factors of the viral pathogenesis in human hosts. GTPases of the Rab family are the largest branch of the Ras-like small GTPase superfamily, and they regulate almost every step during vesicle-mediated trafficking. Evidence has shown that Rab proteins participate in the lifecycle of IAV. In this mini-review, we outline the regulatory mechanisms of different Rab proteins in the lifecycle of IAV. Understanding the role of Rab proteins in IAV infections is important to develop broad-spectrum host-targeted antiviral strategies.


2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rui Gui ◽  
Quanjiao Chen

Viral infection usually leads to cell death. Moderate cell death is a protective innate immune response. By contrast, excessive, uncontrolled cell death causes tissue destruction, cytokine storm, or even host death. Thus, the struggle between the host and virus determines whether the host survives. Influenza A virus (IAV) infection in humans can lead to unbridled hyper-inflammatory reactions and cause serious illnesses and even death. A full understanding of the molecular mechanisms and regulatory networks through which IAVs induce cell death could facilitate the development of more effective antiviral treatments. In this review, we discuss current progress in research on cell death induced by IAV infection and evaluate the role of cell death in IAV replication and disease prognosis.


2012 ◽  
Vol 155 (2-4) ◽  
pp. 409-416 ◽  
Author(s):  
Zhan Guang-jian ◽  
Ling Zong-shuai ◽  
Zhu Yan-li ◽  
Jiang Shi-jin ◽  
Xie Zhi-jing

Sign in / Sign up

Export Citation Format

Share Document