scholarly journals Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving

2015 ◽  
Vol 120 (6) ◽  
pp. 4684-4699 ◽  
Author(s):  
W. A. Bristow ◽  
E. Amata ◽  
J. Spaleta ◽  
M. F. Marcucci
2011 ◽  
Vol 29 (8) ◽  
pp. 1479-1489 ◽  
Author(s):  
O. A. Troshichev ◽  
N. A. Podorozhkina ◽  
A. S. Janzhura

Abstract. The PC (polar cap) index characterizing the solar wind energy input into the magnetosphere is calculated with use of parameters α, β, and φ, determining the relationship between the interplanetary electric field (EKL) and the value of magnetic activity δF in the polar caps. These parameters were noted as valid for large and small EKL values, and as a result the suggestion was made (Troshichev et al., 2006) that the parameters should remain invariant irrespective of solar activity. To verify this suggestion, the independent sets of calibration parameters α, β, and φ were derived separately for the solar maximum (1998–2001) and solar minimum (1997, 2007–2009) epochs, with a proper choice of a quiet daily variation (QDC) as a level of reference for the polar cap magnetic activity value. The results presented in this paper demonstrate that parameters α, β, and φ, derived under conditions of solar maximum and solar minimum, are indeed in general conformity and provide consistent (within 10 % uncertainty) estimations of the PC index. It means that relationship between the geoeffective solar wind variations and the polar cap magnetic activity responding to these variations remains invariant irrespective of solar activity. The conclusion is made that parameters α, β, and φ derived in AARI#3 version for complete cycle of solar activity (1995–2005) can be regarded as forever valid.


2017 ◽  
Vol 35 (6) ◽  
pp. 1275-1291 ◽  
Author(s):  
Allan R. Macneil ◽  
Christopher J. Owen ◽  
Robert T. Wicks

Abstract. The development of knowledge of how the coronal origin of the solar wind affects its in situ properties is one of the keys to understanding the relationship between the Sun and the heliosphere. In this paper, we analyse ACE/SWICS and WIND/3DP data spanning  > 12 years, and test properties of solar wind suprathermal electron distributions for the presence of signatures of the coronal temperature at their origin which may remain at 1 AU. In particular we re-examine a previous suggestion that these properties correlate with the oxygen charge state ratio O7+ ∕ O6+, an established proxy for coronal electron temperature. We find only a very weak but variable correlation between measures of suprathermal electron energy content and O7+ ∕ O6+. The weak nature of the correlation leads us to conclude, in contrast to earlier results, that an initial relationship with core electron temperature has the possibility to exist in the corona, but that in most cases no strong signatures remain in the suprathermal electron distributions at 1 AU. It cannot yet be confirmed whether this is due to the effects of coronal conditions on the establishment of this relationship or due to the altering of the electron distributions by processing during transport in the solar wind en route to 1 AU. Contrasting results for the halo and strahl population favours the latter interpretation. Confirmation of this will be possible using Solar Orbiter data (cruise and nominal mission phase) to test whether the weakness of the relationship persists over a range of heliocentric distances. If the correlation is found to strengthen when closer to the Sun, then this would indicate an initial relationship which is being degraded, perhaps by wave–particle interactions, en route to the observer.


2005 ◽  
Vol 23 (11) ◽  
pp. 3533-3547 ◽  
Author(s):  
A. J. Ridley

Abstract. It is known that the ionospheric cross polar cap potential (CPCP) saturates when the interplanetary magnetic field (IMF) Bz becomes very large. Few studies have offered physical explanations as to why the polar cap potential saturates. We present 13 events in which the reconnection electric field (REF) goes above 12mV/m at some time. When these events are examined as typically done in previous studies, all of them show some signs of saturation (i.e., over-prediction of the CPCP based on a linear relationship between the IMF and the CPCP). We show that by taking into account the size of the magnetosphere and the fact that the post-shock magnetic field strength is strongly dependent upon the solar wind Mach number, we can better specify the ionospheric CPCP. The CPCP (Φ) can be expressed as Φ=(10-4v2+11.7B(1-e-Ma/3)sin3(θ/2)) {rms/9 (where v is the solar wind velocity, B is the combined Y and Z components of the interplanetary magnetic field, Ma is the solar wind Mach number, θ=acos(Bz/B), and rms is the stand-off distance to the magnetopause, assuming pressure-balance between the solar wind and the magnetosphere). This is a simple modification of the original Boyle et al. (1997) formulation.


Strong interactions occur between the solar wind and the Earth’s magnetic field which result in the convection of ionospheric plasma over the polar cap regions. This generally forms a two-cell pattern with westward and eastward flows in the pre- and post-midnight sectors respectively. The flow pattern is sensitive to the flux of the solar wind and the direction of the interplanetary magnetic field. Observations of the flow pattern are thus of considerable value in the interpretation of the magnetosphere-ionosphere coupling processes and in identifying the influence of the solar wind on the Earth’s environment. The plasma convection can be observed by ground-based coherent and incoherent scatter radars and the flow vectors determined. Measurements for a range of flow conditions are presented. These are interpreted in terms of the interactions of the solar wind with the magnetosphere and the resulting electric fields which drive the plasma flows in the ionosphere.


2001 ◽  
Vol 19 (10/12) ◽  
pp. 1589-1612 ◽  
Author(s):  
M. Lockwood ◽  
H. Opgenoorth ◽  
A. P. van Eyken ◽  
A. Fazakerley ◽  
J.-M. Bosqued ◽  
...  

Abstract. During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV) and the topside ionospheric enhancements seen by the ESR (at 400–700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.Key words. Magnetospheric physics (polar cap phenomena; solar wind – magnetosphere interactions; magnetosphere – ionosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document