scholarly journals Extreme temperature and precipitation events in March 2015 in central and northern Chile

2016 ◽  
Vol 121 (9) ◽  
pp. 4563-4580 ◽  
Author(s):  
Bradford S. Barrett ◽  
Diego A. Campos ◽  
José Vicencio Veloso ◽  
Roberto Rondanelli
2020 ◽  
Vol 33 (13) ◽  
pp. 5651-5671 ◽  
Author(s):  
Wang Zhan ◽  
Xiaogang He ◽  
Justin Sheffield ◽  
Eric F. Wood

AbstractOver the past decades, significant changes in temperature and precipitation have been observed, including changes in the mean and extremes. It is critical to understand the trends in hydroclimatic extremes and how they may change in the future as they pose substantial threats to society through impacts on agricultural production, economic losses, and human casualties. In this study, we analyzed projected changes in the characteristics, including frequency, seasonal timing, and maximum spatial and temporal extent, as well as severity, of extreme temperature and precipitation events, using the severity–area–duration (SAD) method and based on a suite of 37 climate models archived in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Comparison between the CMIP5 model estimated extreme events and an observation-based dataset [Princeton Global Forcing (PGF)] indicates that climate models have moderate success in reproducing historical statistics of extreme events. Results from the twenty-first-century projections suggest that, on top of the rapid warming indicated by a significant increase in mean temperature, there is an overall wetting trend in the Northern Hemisphere with increasing wet extremes and decreasing dry extremes, whereas the Southern Hemisphere will have more intense wet extremes. The timing of extreme precipitation events will change at different spatial scales, with the largest change occurring in southern Asia. The probability of concurrent dry/hot and wet/hot extremes is projected to increase under both RCP4.5 and RCP8.5 scenarios, whereas little change is detected in the probability of concurrent dry/cold events and only a slight decrease of the joint probability of wet/cold extremes is expected in the future.


2006 ◽  
Vol 236 (1-2) ◽  
pp. 151-168 ◽  
Author(s):  
Noah S. Diffenbaugh ◽  
Jason L. Bell ◽  
Lisa C. Sloan

2020 ◽  
Vol 13 (11) ◽  
pp. 5345-5366
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
...  

Abstract. The representation and projection of extreme temperature and precipitation events in regional and global climate models are of major importance for the study of climate change impacts. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensity, duration and frequency of these extremes. Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) model to determine the influence of the land surface model (LSM) component on uncertainties associated with extreme events. First, we analyze land–atmosphere interactions within four simulations performed by the WRF model from 1980 to 2012 over North America, using three different LSMs. Results show LSM-dependent differences at regional scales in the frequency of occurrence of events when surface conditions are altered by atmospheric forcing or land processes. The inter-model range of extreme statistics across the WRF simulations is large, particularly for indices related to the intensity and duration of temperature and precipitation extremes. Our results show that the WRF simulation of the climatology of heat extremes can be 5 ∘C warmer and 6 d longer depending on the employed LSM component, and similarly for cold extremes and heavy precipitation events. Areas showing large uncertainty in WRF-simulated extreme events are also identified in a model ensemble from three different regional climate model (RCM) simulations participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project, revealing the implications of these results for other model ensembles. Thus, studies based on multi-model ensembles and reanalyses should include a variety of LSM configurations to account for the uncertainty arising from this model component or to test the performance of the selected LSM component before running the whole simulation. This study illustrates the importance of the LSM choice in climate simulations, supporting the development of new modeling studies using different LSM components to understand inter-model differences in simulating extreme temperature and precipitation events, which in turn will help to reduce uncertainties in climate model projections.


2018 ◽  
Vol 123 (11) ◽  
pp. 5827-5844 ◽  
Author(s):  
Yang Xi ◽  
Chiyuan Miao ◽  
Jingwen Wu ◽  
Qingyun Duan ◽  
Xiaohui Lei ◽  
...  

Author(s):  
Sophie C. Lewis ◽  
Sarah E. Perkins-Kirkpatrick ◽  
Andrew D. King

Abstract. Extreme temperature and precipitation events occurring in Australia in recent decades have caused significant socio-economic and environmental impacts, and thus determining the factors contributing to these extremes is an active area of research. Many recently occurring record-breaking temperature and rainfall events have now been examined from an extreme event attribution (EEA) perspective. This paper describes a set of studies that have examined the causes of extreme climate events using various general circulation models (GCMs), presenting a comprehensive methodology for GCM-based attribution of extremes of temperature and precipitation observed on large spatial and temporal scales in Australia. First, we review how Coupled Model Intercomparison Project Phase 5 (CMIP5) models have been used to examine the changing odds of observed extremes. Second, we review how a large perturbed initial condition ensemble of a single climate model (CESM) has been used to quantitatively examine the changing characteristics of Australian heat extremes. For each approach, methodological details and applications are provided and limitations highlighted. The conclusions of this methodological review discuss the limitations and uncertainties associated with this approach and identify key unexplored applications of GCM-based attribution of extremes. Ideally, this information will be useful for the application of the described extreme event attribution approaches elsewhere.


2021 ◽  
Vol 168 (1-2) ◽  
Author(s):  
Dipesh Chapagain ◽  
Sanita Dhaubanjar ◽  
Luna Bharati

AbstractExisting climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of the Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali are made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors is undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.


Sign in / Sign up

Export Citation Format

Share Document