scholarly journals Unpacking future climate extremes and their sectoral implications in western Nepal

2021 ◽  
Vol 168 (1-2) ◽  
Author(s):  
Dipesh Chapagain ◽  
Sanita Dhaubanjar ◽  
Luna Bharati

AbstractExisting climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of the Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali are made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors is undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.

2021 ◽  
Author(s):  
Dipesh Chapagain ◽  
Sanita Dhaubanjar ◽  
Luna Bharati

Abstract Existing climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali were made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors was undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.


2020 ◽  
Vol 33 (13) ◽  
pp. 5651-5671 ◽  
Author(s):  
Wang Zhan ◽  
Xiaogang He ◽  
Justin Sheffield ◽  
Eric F. Wood

AbstractOver the past decades, significant changes in temperature and precipitation have been observed, including changes in the mean and extremes. It is critical to understand the trends in hydroclimatic extremes and how they may change in the future as they pose substantial threats to society through impacts on agricultural production, economic losses, and human casualties. In this study, we analyzed projected changes in the characteristics, including frequency, seasonal timing, and maximum spatial and temporal extent, as well as severity, of extreme temperature and precipitation events, using the severity–area–duration (SAD) method and based on a suite of 37 climate models archived in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Comparison between the CMIP5 model estimated extreme events and an observation-based dataset [Princeton Global Forcing (PGF)] indicates that climate models have moderate success in reproducing historical statistics of extreme events. Results from the twenty-first-century projections suggest that, on top of the rapid warming indicated by a significant increase in mean temperature, there is an overall wetting trend in the Northern Hemisphere with increasing wet extremes and decreasing dry extremes, whereas the Southern Hemisphere will have more intense wet extremes. The timing of extreme precipitation events will change at different spatial scales, with the largest change occurring in southern Asia. The probability of concurrent dry/hot and wet/hot extremes is projected to increase under both RCP4.5 and RCP8.5 scenarios, whereas little change is detected in the probability of concurrent dry/cold events and only a slight decrease of the joint probability of wet/cold extremes is expected in the future.


2016 ◽  
Vol 11 (2) ◽  
pp. 670-678 ◽  
Author(s):  
N. S Vithlani ◽  
H. D Rank

For the future projections Global climate models (GCMs) enable development of climate projections and relate greenhouse gas forcing to future potential climate states. When focusing it on smaller scales it exhibit some limitations to overcome this problem, regional climate models (RCMs) and other downscaling methods have been developed. To ensure statistics of the downscaled output matched the corresponding statistics of the observed data, bias correction was used. Quantify future changes of climate extremes were analyzed, based on these downscaled data from two RCMs grid points. Subset of indices and models, results of bias corrected model output and raw for the present day climate were compared with observation, which demonstrated that bias correction is important for RCM outputs. Bias correction directed agreements of extreme climate indices for future climate it does not correct for lag inverse autocorrelation and fraction of wet and dry days. But, it was observed that adjusting both the biases in the mean and variability, relatively simple non-linear correction, leads to better reproduction of observed extreme daily and multi-daily precipitation amounts. Due to climate change temperature and precipitation will increased day by day.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Francesca Marsili

<p>As consequence of global warming extreme weather events might become more frequent and severe across the globe. The evaluation of the impact of climate change on extremes is then a crucial issue for the resilience of infrastructures and buildings and is a key challenge for adaptation planning. In this paper, a suitable procedure for the estimation of future trends of climatic actions is presented starting from the output of regional climate models and taking into account the uncertainty in the model itself. In particular, the influence of climate change on ground snow loads is discussed in detail and the typical uncertainty range is determined applying an innovative algorithm for weather generation. Considering different greenhouse gasses emission scenarios, some results are presented for the Italian Mediterranean region proving the ability of the method to define factors of change for climate extremes also allowing a sound estimate of the uncertainty range associated with different models.</p>


2020 ◽  
Author(s):  
Joanna Struzewska ◽  
Maciej Jefimow ◽  
Paulina Jagiełło ◽  
Maria Kłeczek ◽  
Anahita Sattari ◽  
...  

&lt;p&gt;Regional climate projections are necessary to assess possible changes in the exposure and risk to allow planning the adaptation strategies.&lt;/p&gt;&lt;p&gt;Projections of temperature and precipitation trends were developed using a consistent methodology and homogeneous datasets to address the needs of up-to-date climate change scenarios for Poland.&lt;/p&gt;&lt;p&gt;The Euro-Cordex results with the resolution of 0.11deg (about 12.5km) for RCP4.5 and RCP8.5 were downscaled based on various historical gridded datasets (EOBS, ERA5, UERRA and data from IMWM).&lt;/p&gt;&lt;p&gt;Ensemble analysis was undertaken to assess the projection uncertainty and ensemble mean were calculated for base parameters (daily average, minimum, and maximum temperature and daily precipitation sum) as well as for the number of climate indices.&lt;/p&gt;&lt;p&gt;We will present spatial and temporal variability of selected climate indices over Poland for subsequent decades. Increase of the annual average temperature is due to the rise in the number of hot days and the reduction of the number of frost days. All temperature indices are characterized by statistically significant trends, strongest for RCP8.5. The most pronounced changes in the frequency and amount of precipitation occur in the north-east of Poland. The total number of days with precipitation increases slightly. The increase in the annual rainfall is due to the increase in the number of days with extreme precipitation.&lt;/p&gt;&lt;p&gt;Results are presented via an interactive web portal. Further analysis includes the development of projection for solar radiation, wind speed, humidity and snow cover.&lt;/p&gt;


2016 ◽  
Vol 8 (1) ◽  
pp. 142-164 ◽  
Author(s):  
Philbert Luhunga ◽  
Ladslaus Chang'a ◽  
George Djolov

The IPCC (Intergovernmental Panel on Climate Change) assessment reports confirm that climate change will hit developing countries the hardest. Adaption is on the agenda of many countries around the world. However, before devising adaption strategies, it is crucial to assess and understand the impacts of climate change at regional and local scales. In this study, the impact of climate change on rain-fed maize (Zea mays) production in the Wami-Ruvu basin of Tanzania was evaluated using the Decision Support System for Agro-technological Transfer. The model was fed with daily minimum and maximum temperatures, rainfall and solar radiation for current climate conditions (1971–2000) as well as future climate projections (2010–2099) for two Representative Concentration Pathways: RCP 4.5 and RCP 8.5. These data were derived from three high-resolution regional climate models, used in the Coordinated Regional Climate Downscaling Experiment program. Results showed that due to climate change future maize yields over the Wami-Ruvu basin will slightly increase relative to the baseline during the current century under RCP 4.5 and RCP 8.5. However, maize yields will decline in the mid and end centuries. The spatial distribution showed that high decline in maize yields are projected over lower altitude regions due to projected increase in temperatures in those areas.


2017 ◽  
Vol 9 (1) ◽  
pp. 207-222 ◽  
Author(s):  
Philbert Luhunga

AbstractIn this study, the impact of inter-seasonal climate variability on rainfed maize (Zea mays) production over the Wami-Ruvu basin of Tanzania is evaluated. Daily high-resolution climate simulations from the Coordinated Regional Climate Downscaling Experiment_Regional Climate Models (CORDEX_RCMs) are used to drive the Decision Support System for Agro-technological Transfer (DSSAT) to simulate maize yields. Climate simulations for the base period of 35 years (1971–2005) are used to drive DSSAT to simulate maize yields during the historical climate. On the other hand, climate projections for the period 2010–2039 (current), 2040–2069 (mid), and 2070–2099 centuries for two Representative Concentration Pathway (RCP45 and 85) emission scenarios are used to drive DSSAT to simulate maize yields in respective centuries. Statistical approaches based on Pearson correlation coefficient and the coefficients of determination are used in the analysis. Results show that rainfall, maximum temperature, and solar radiation are the most important climate variables that determine variation in rainfed maize yields over the Wami-Ruvu basin of Tanzania. They explain the variability in maize yields in historical climate condition (1971–2005), present century under RCP 4.5, and mid and end centuries under both RCP 4.5 and RCP 8.5.


2020 ◽  
Vol 59 (6) ◽  
pp. 1109-1123 ◽  
Author(s):  
François DuchÊne ◽  
Bert Van Schaeybroeck ◽  
Steven Caluwaerts ◽  
Rozemien De Troch ◽  
Rafiq Hamdi ◽  
...  

AbstractThe demand of city planners for quantitative information on the impact of climate change on the urban environment is increasing. However, such information is usually extracted from decadelong climate projections generated with global or regional climate models (RCMs). Because of their coarse resolution and unsuitable physical parameterization, however, their model output is not adequate to be used at city scale. A full dynamical downscaling to city level, on the other hand, is computationally too expensive for climatological time scales. A statistical–dynamical computationally inexpensive method is therefore proposed that approximates well the behavior of the full dynamical downscaling approach. The approach downscales RCM simulations using the combination of an RCM at high resolution (H-RES) and a land surface model (LSM). The method involves the setup of a database of urban signatures by running an H-RES RCM with and without urban parameterization for a relatively short period. Using an analog approach, these signatures are first selectively added to the long-term RCM data, which are then used as forcing for an LSM using an urban parameterization in a stand-alone mode. A comparison with a full dynamical downscaling approach is presented for the city of Brussels, Belgium, for 30 summers with the combined ALADIN–AROME model (ALARO-0) coupled to the Surface Externalisée model (SURFEX) as H-RES RCM and SURFEX as LSM. The average bias of the nocturnal urban heat island during heat waves is vanishingly small, and the RMSE is strongly reduced. Not only is the statistical–dynamical approach able to correct the heat-wave number and intensities, it can also improve intervariable correlations and multivariate and temporally correlated indices, such as Humidex.


2017 ◽  
Vol 30 (14) ◽  
pp. 5151-5165 ◽  
Author(s):  
Else J. M. van den Besselaar ◽  
Gerard van der Schrier ◽  
Richard C. Cornes ◽  
Aris Suwondo Iqbal ◽  
Albert M. G. Klein Tank

This study introduces a new daily high-resolution land-only observational gridded dataset, called SA-OBS, for precipitation and minimum, mean, and maximum temperature covering Southeast Asia. This dataset improves upon existing observational products in terms of the number of contributing stations, in the use of an interpolation technique appropriate for daily climate observations, and in making estimates of the uncertainty of the gridded data. The dataset is delivered on a 0.25° × 0.25° and a 0.5° × 0.5° regular latitude–longitude grid for the period 1981–2014. The dataset aims to provide best estimates of grid square averages rather than point values to enable direct comparisons with regional climate models. Next to the best estimates, daily uncertainties are quantified. The underlying daily station time series are collected in cooperation between meteorological services in the region: the Southeast Asian Climate Assessment and Dataset (SACA&D). Comparisons are made with station observations and other gridded station or satellite-based datasets (APHRODITE, CMORPH, TRMM). The comparisons show that vast differences exist in the average daily precipitation, the number of rainy days, and the average precipitation on a wet day between these datasets. SA-OBS closely resembles the station observations in terms of dry/wet frequency, the timing of precipitation events, and the reproduction of extreme precipitation. New versions of SA-OBS will be released when the station network in SACA&D has grown further.


Sign in / Sign up

Export Citation Format

Share Document