Using dual‐domain advective‐transport simulation to reconcile multiple‐tracer ages and estimate dual‐porosity transport parameters

2017 ◽  
Vol 53 (6) ◽  
pp. 5002-5016 ◽  
Author(s):  
Ward E. Sanford ◽  
L. Niel Plummer ◽  
Gerolamo Casile ◽  
Ed Busenberg ◽  
David L. Nelms ◽  
...  
1992 ◽  
Vol 294 ◽  
Author(s):  
J. L. Conca ◽  
M.J. Apted ◽  
R.C. Arthur

ABSTRACTA new flow technology has been developed that significantly decreases the time required to obtain transport data on saturated and unsaturated porous/fractured media. This technique is based on open-flow centrifugation and was developed to measure steady-state transport properties in most geologic materials within a matter of hours. Centripetal acceleration does not induce artificial effects in samples i.e., fracturing, collapse of interlayer structures, structural dewatering, compaction, chemical changes, etc., that occur with high-pressure methods. Using this technique, hydraulic conductivities (K) and diffusion coefficients (D) for compacted bentonite and four host rocks have been measured and re-interpreted. Based on these new data, K for compacted bentonite is less than 10−14 m/s, a factor of 1000 lower than previous pressure-gradient measurements, providing further assurance that radionuclide transport through bentonite backfill will be diffusion limited. Measured K for mudstone (1.8 × 10−12 m/s) indicates diffusion-limited far-field transport, while advective transport should occur for granite, basalt, and tuff, with expected matrix diffusion coefficients (correlated to measured D values) of 8.3 × 10−13 and 2.5 × 10−12 m2/s for fractured granite and basalt, respectively.


Ground Water ◽  
2018 ◽  
Vol 57 (4) ◽  
pp. 640-646 ◽  
Author(s):  
Courtney R. Scruggs ◽  
Martin Briggs ◽  
Frederick D. Day‐Lewis ◽  
Dale Werkema ◽  
John W. Lane

Author(s):  
G. Severino ◽  
D. M. Tartakovsky ◽  
G. Srinivasan ◽  
H. Viswanathan

We consider multi-component reactive transport in heterogeneous porous media with uncertain hydraulic and chemical properties. This parametric uncertainty is quantified by treating relevant flow and transport parameters as random fields, which renders the governing equations stochastic. We adopt a stochastic Lagrangian framework to replace a three-dimensional advection–reaction transport equation with a one-dimensional equation for solute travel times. We derive approximate expressions for breakthrough curves and their temporal moments. To illustrate our general theory, we consider advective transport of dissolved species undergoing an irreversible bimolecular reaction.


1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


2017 ◽  
Vol 68 (5) ◽  
pp. 903-907
Author(s):  
Ecaterina Anca Serban ◽  
Ioana Diaconu ◽  
Elena Ruse ◽  
Georgiana Ileana Badea ◽  
Adriana Cuciureanu ◽  
...  

Indole-3-acetic acid is a growth phytohormone considered the most important representative of auxin class. This paper presents the assessment of some kinetic parameters in the process of transport of indole-3-acetic acid taking into consideration the kinetic model of consecutive irreversible first order reactions. It was pursued the influence upon the process of parameters such as: feed phase concentration, stripping phase concentration in the presence of two type carriers: tributyl phosphate (TBP) and trioctylphosphine oxide (TOPO). Depending on these transport parameters were calculated kinetics parameters such as: pseudo-first-order apparent membrane entrance and exit rate constants, the maximum flux at the entrance and exit out of the membrane. The highest values of the transport flux is obtained in the presence of carrier trioctylphosphine oxide (TOPO) at the concentration in the feed phase of 10-4 mol/L indole-3-acetic acid and a concentration of 10--2mol/L NaOH in the stripping phase.


Sign in / Sign up

Export Citation Format

Share Document