scholarly journals Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

2018 ◽  
Vol 123 (2) ◽  
pp. 1097-1112 ◽  
Author(s):  
Johannes Mohrmann ◽  
Robert Wood ◽  
Jeremy McGibbon ◽  
Ryan Eastman ◽  
Edward Luke
2011 ◽  
Vol 11 (3) ◽  
pp. 7045-7093 ◽  
Author(s):  
Z. Hosaynali Beygi ◽  
H. Fischer ◽  
H. D. Harder ◽  
M. Martinez ◽  
R. Sander ◽  
...  

Abstract. Ozone (O3) is a photochemical oxidant, an air pollutant and a greenhouse gas. As the main precursor of the hydroxyl radical (OH) it strongly affects the oxidation power of the atmosphere. The remote marine boundary layer (MBL) is considered an important region in terms of chemical O3 loss; however surface-based atmospheric observations are sparse and the photochemical processes are not well understood. To investigate the photochemistry under the clean background conditions of the Southern Atlantic Ocean, ship measurements of NO, NO2, O3, JNO2, J(O1D), HO2, OH, ROx and a range of meteorological parameters were carried out. The concentrations of NO and NO2 measured on board the French research vessel Marion-Dufresne (28° S–57° S, 46° W–34° E) in March 2007, are among the lowest yet observed. The data is evaluated for consistency with photochemical steady state (PSS) conditions, and the calculations indicate substantial deviations from PSS (Φ>1). The deviations observed under low NOx conditions (5–25 pptv) demonstrate a remarkable upward tendency in the Leighton ratio (used to characterize PSS) with increasing NOx mixing ratio and JNO2 intensity. It is a paradigm in atmospheric chemistry that OH largely controls the oxidation efficiency of the atmosphere. However, evidence is growing that for unpolluted low-NOx (NO + NO2) conditions the atmospheric oxidant budget is poorly understood. Nevertheless, for the very cleanest conditions, typical for the remote marine boundary layer, good model agreement with measured OH and HO2 radicals has been interpreted as accurate understanding of baseline photochemistry. Here we show that such agreement can be deceptive and that a yet unidentified oxidant is needed to explain the photochemical conditions observed at 40°–60° S over the Atlantic Ocean.


2014 ◽  
Vol 27 (23) ◽  
pp. 8827-8835 ◽  
Author(s):  
Xiquan Dong ◽  
Baike Xi ◽  
Peng Wu

Abstract A new method has been developed to retrieve the nighttime marine boundary layer (MBL) cloud microphysical properties, which provides a complete 19-month dataset to investigate the diurnal variation of MBL cloud microphysical properties at the Azores. Compared to the corresponding daytime results presented in the authors' previous study over the Azores region, all nighttime monthly means of cloud liquid water path (LWP) exceed their daytime counterparts with an annual-mean LWP of 140 g m−2, which is ~30.9 g m−2 larger than daytime. Because the MBL clouds are primarily driven by convective instabilities caused by cloud-top longwave (LW) radiative cooling, more MBL clouds are well mixed and coupled with the surface during the night; thus, its cloud layer is deeper and its LWP is higher. During the day, the cloud layer is warmed by the absorption of solar radiation and partially offsets the cloud-top LW cooling, which makes the cloud layer thinner with less LWP. The seasonal and diurnal variations of cloud LWC and optical depth basically follow the variation of LWP. There are, however, no significant day–night differences and diurnal variations in cloud-droplet effective radius (re), number concentration (Nd), and corresponding surface measured cloud condensation nuclei (CCN) number concentration (NCCN) (at supersaturation S = 0.2%). Surface NCCN increases from around sunrise (0300–0600 LT) to late afternoon, which strongly correlates with surface wind speed (r = 0.76) from 0300 to 1900 LT. The trend in hourly-mean Nd is consistent with NCCN variation from 0000 to 0900 LT but not for afternoon and evening with an averaged ratio (Nd/NCCN) of 0.35 during the entire study period.


2005 ◽  
Vol 5 (6) ◽  
pp. 12403-12464 ◽  
Author(s):  
S. C. Smith ◽  
J. D. Lee ◽  
W. J. Bloss ◽  
G. P. Johnson ◽  
D. E. Heard

Abstract. OH and HO2 concentrations were measured simultaneously at the Mace Head Atmospheric Research Station in the summer of 2002 during the NAMBLEX (North Atlantic Marine Boundary Layer EXperiment) field campaign. OH was measured by laser-induced fluorescence employing the FAGE (Fluorescence Assay by Gas Expansion) technique, with a mean daytime detection limit of 2.7×105 molecule cm−3 (5 min acquisition period; signal-to-noise ratio = 1). HO2 was detected as OH following its chemical conversion through addition of NO, with a mean detection limit of 4.4×106 molecule cm−3. The diurnal variation of OH was measured on 24 days, and that of HO2 on 17 days. The local solar noon OH concentrations ranged between (3–8)×106 molecule cm−3, with a 24 h mean concentration of 9.1×105 molecule cm−3. The local solar noon HO2 concentrations were (0.9–2.1)×108 molecule cm−3 (3.5–8.2 pptv), with a 24 h mean concentration of 4.2×107 molecule cm−3. HO2 radicals in the range (2–3)×107 molecule cm−3 were observed at night. During NAMBLEX, a comprehensive suite of supporting measurements enabled a detailed study of the behaviour of HOx radicals under primarily clean marine conditions. Case study periods highlight the typical radical levels observed under different conditions. Steady state expressions are used to calculate OH and HO2 concentrations and to evaluate the effect of different free-radical sources and sinks. The diurnally averaged calculated to measured OH ratio was 1.04±0.36, but the ratio displays a distinct diurnal variation, being less than 1 during the early morning and late afternoon/evening, and greater than 1 in the middle of the day. For HO2 there was an overprediction, with the agreement between calculated and measured concentrations improved by including reaction with measured IO and BrO radicals and uptake to aerosols. Increasing the concentration of IO radicals included in the calculations to above that measured by a DOAS instrument with an absorption path located mainly over the ocean, reflecting the domination of the inter-tidal region as an iodine source at Mace Head, led to further improvement. The results are compared with previous measurements at Mace Head, and elsewhere in the remote marine boundary layer.


2010 ◽  
Vol 10 (11) ◽  
pp. 26931-26959
Author(s):  
J.-P. Chen ◽  
T.-S. Tsai ◽  
S.-C. Liu

Abstract. Photochemically driven nucleation bursts, which typically occur in a few hours after sunrise, often produce strong aerosol number concentration (ANC) fluctuations. The causes of such ANC spikes were investigated using a detailed aerosol model running in the parcel mode. Two potential mechanisms for the ANC spikes are proposed and simulated. The blocking of actinic flux by scattered clouds can significantly influence new particle production, but this does not cause strong fluctuations in the number of aerosols within sizes greater than the detection limit of our measurements. A more plausible mechanism is the turbulence eddy effect. Strong aerosol nucleation may occur in both updrafts and downdrafts, while the cloud formation at the boundary layer top strongly reduces the number of aerosols. As the number of aerosols is sensitive to turbulence eddy and cloud formation properties, a changing turbulence condition would result in large fluctuations in the evolution of ANC similar to that observed at the surface.


2011 ◽  
Vol 11 (1) ◽  
pp. 885-916 ◽  
Author(s):  
H. Wang ◽  
P. J. Rasch ◽  
G. Feingold

Abstract. We use a cloud-system-resolving model to study marine-cloud brightening. We examine how injected aerosol particles that act as cloud condensation nuclei (CCN) are transported within the marine boundary layer and how the additional particles in clouds impact cloud microphysical processes, and feedback on dynamics. Results show that the effectiveness of cloud brightening depends strongly on meteorological and background aerosol conditions. Cloud albedo enhancement is very effective in a weakly precipitating boundary layer and in CCN-limited conditions preceded by heavy and/or persistent precipitation. The additional CCN help sustain cloud water by weakening the precipitation substantially in the former case and preventing the boundary layer from collapse in the latter. For a given amount of injected CCN, the injection method (i.e., number and distribution of sprayers) is critical to the spatial distribution of these CCN. Both the areal coverage and the number concentration of injected particles are key players but neither one always emerges as more important than the other. The same amount of injected material is much less effective in either strongly precipitating clouds or polluted clouds, and it is ineffective in a relatively dry boundary layer that supports clouds of low liquid water path. In the polluted case and "dry" case, the CCN injection increases drop number concentration but lowers supersaturation and liquid water path. As a result, the cloud experiences very weak albedo enhancement, regardless of the injection method.


2018 ◽  
Vol 18 (19) ◽  
pp. 14623-14636 ◽  
Author(s):  
Michael S. Diamond ◽  
Amie Dobracki ◽  
Steffen Freitag ◽  
Jennifer D. Small Griswold ◽  
Ashley Heikkila ◽  
...  

Abstract. The colocation of clouds and smoke over the southeast Atlantic Ocean during the southern African biomass burning season has numerous radiative implications, including microphysical modulation of the clouds if smoke is entrained into the marine boundary layer. NASA's ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign is studying this system with aircraft in three field deployments between 2016 and 2018. Results from ORACLES-2016 show that the relationship between cloud droplet number concentration and smoke below cloud is consistent with previously reported values, whereas cloud droplet number concentration is only weakly associated with smoke immediately above cloud at the time of observation. By combining field observations, regional chemistry–climate modeling, and theoretical boundary layer aerosol budget equations, we show that the history of smoke entrainment (which has a characteristic mixing timescale on the order of days) helps explain variations in cloud properties for similar instantaneous above-cloud smoke environments. Precipitation processes can obscure the relationship between above-cloud smoke and cloud properties in parts of the southeast Atlantic, but marine boundary layer carbon monoxide concentrations for two case study flights suggest that smoke entrainment history drove the observed differences in cloud properties for those days. A Lagrangian framework following the clouds and accounting for the history of smoke entrainment and precipitation is likely necessary for quantitatively studying this system; an Eulerian framework (e.g., instantaneous correlation of A-train satellite observations) is unlikely to capture the true extent of smoke–cloud interaction in the southeast Atlantic.


2010 ◽  
Vol 10 (9) ◽  
pp. 4187-4206 ◽  
Author(s):  
R. McLaren ◽  
P. Wojtal ◽  
D. Majonis ◽  
J. McCourt ◽  
J. D. Halla ◽  
...  

Abstract. Nighttime chemistry in polluted regions is dominated by the nitrate radical (NO3) including its direct reaction with natural and anthropogenic hydrocarbons, its reaction with NO2 to form N2O5, and subsequent reactions of N2O5 to form HNO3 and chlorine containing photolabile species. We report nighttime measurements of NO3, NO2, and O3, in the polluted marine boundary layer southwest of Vancouver, BC during a three week study in the summer of 2005. The concentration of N2O5 was calculated using the well known equilibrium, NO3+NO2↔N2O5. Median overnight mixing ratios of NO3, N2O5 and NO2 were 10.3 ppt, 122 ppt and 8.3 ppb with median N2O5/NO3 molar ratios of 13.1 and median nocturnal partitioning of 4.9%. Due to the high levels of NO2 that can inhibit approach to steady-state, we use a method for calculating NO3 lifetimes that does not assume the steady-state approximation. Median and average lifetimes of NO3 in the NO3-N2O5 nighttime reservoir were 1.1–2.3 min. We have determined nocturnal profiles of the pseudo first order loss coefficient of NO3 and the first order loss coefficients of N2O5 by regression of the NO3 inverse lifetimes with the [N2O5]/[NO3] ratio. Direct losses of NO3 are highest early in the night, tapering off as the night proceeds. The magnitude of the first order loss coefficient of N2O5 is consistent with, but not verification of, recommended homogeneous rate coefficients for reaction of N2O5 with water vapor early in the night, but increases significantly in the latter part of the night when relative humidity increases beyond 75%, consistent with heterogeneous reactions of N2O5 with aerosols with a rate constant khet=(1.2±0.4)×10−3 s−1−(1.6±0.4)×10−3 s−1. Analysis indicates that a correlation exists between overnight integrated N2O5 concentrations in the marine boundary layer, a surrogate for the accumulation of chlorine containing photolabile species, and maximum 1-h average O3 at stations in the Lower Fraser Valley the next day when there is clear evidence of a sea breeze transporting marine air into the valley. The range of maximum 1-h average O3 increase attributable to the correlation is ΔO3=+1.1 to +8.3 ppb throughout the study for the average of 20 stations, although higher increases are seen for stations far downwind of the coastal urban area. The correlation is still statistically significant on the second day after a nighttime accumulation, but with a different spatial pattern favouring increased O3 at the coastal urban stations, consistent with transport of polluted air back to the coast.


2011 ◽  
Vol 11 (14) ◽  
pp. 7171-7184 ◽  
Author(s):  
J.-P. Chen ◽  
T.-S. Tsai ◽  
S.-C. Liu

Abstract. Photochemically driven nucleation bursts, which typically occur within a few hours after sunrise, often produce strong aerosol number concentration (ANC) fluctuations. The causes of such ANC spikes were investigated using a detailed aerosol model running in the parcel mode. Two potential mechanisms for the ANC spikes were proposed and simulated. The blocking of actinic flux by scattered clouds can significantly influence new particle production, but this does not cause strong fluctuations in the number of aerosols within sizes greater than the detection limit of our measurements. A more plausible mechanism is the turbulence eddy effect. Strong aerosol nucleation may occur in both updrafts and downdrafts, while the cloud formation at the boundary layer top strongly reduces the number of aerosols. As the number of aerosols is sensitive to turbulence eddy and cloud formation properties, a changing turbulence condition would result in large fluctuations in the evolution of ANC similar to that observed at the surface.


2009 ◽  
Vol 9 (4) ◽  
pp. 1465-1478 ◽  
Author(s):  
H. Venzac ◽  
K. Sellegri ◽  
P. Villani ◽  
D. Picard ◽  
P. Laj

Abstract. Particle number concentration and size distribution are important variables needed to constrain the role of atmospheric particles in the Earth radiation budget, both directly and indirectly through CCN activation. They are also linked to regulated variables such as particle mass (PM) and therefore of interest to air quality studies. However, data on their long-term variability are scarce, in particular at high altitudes. In this paper, we investigate the diurnal and seasonal variability of the aerosol total number concentration and size distribution at the puy de Dôme research station (France, 1465 m a.s.l.). We report a variability of aerosol particle total number concentration measured over a five-year (2003–2007) period for particles larger than 10 nm and aerosol size distributions between 10 and 500 nm over a two-year period (January 2006 to December 2007). Concentrations show a strong seasonality with maxima during summer and minima during winter. A diurnal variation is also observed with maxima between 12:00 and 18:00 UTC. At night (00:00–06:00 UTC), the median hourly total concentration varies from 600 to 800 cm−3 during winter and from 1700 to 2200 cm−3 during summer. During the day (08:00–18:00 UTC), the concentration is in the range of 700 to 1400 cm−3 during winter and of 2500 to 3500 cm−3 during summer. An averaged size distribution of particles (10–500 nm) was calculated for each season. The total aerosol number concentrations are dominated by the Aitken mode integral concentrations, which drive most of the winter to summer total concentrations increase. The night to day increase in dominated by the nucleation mode integral number concentration. Because the site is located in the free troposphere only a fraction of the time, in particular at night and during the winter season, we have subsequently analyzed the variability for nighttime and free tropospheric (FT)/residual layer (RL) conditions only. We show that a seasonal variability is still observed for these FT/RL conditions. The FT/RL seasonal variation is due to both seasonal changes in the air mass origin from winter to summer and enhanced concentrations of particles in the residual layer/free troposphere in summer. The later observation can be explained by higher emissions intensity in the boundary layer, stronger exchanges between the boundary layer and the free troposphere as well as enhanced photochemical processes. Finally, aerosols mean size distributions are calculated for a given air mass type (marine/continental/regional) according to the season for the specific conditions of the residual layer/free troposphere. The seasonal variability in aerosol sources seems to be predominant over the continent compared to the seasonal variation of marine aerosol sources. These results are of regional relevance and can be used to constrain chemical-transport models over Western Europe.


Sign in / Sign up

Export Citation Format

Share Document