Alternative Fermi Contact Operators for EPR and NMR

2004 ◽  
pp. 493-504 ◽  
Author(s):  
Vitaly A. Rassolov ◽  
Daniel M. Chipman
Keyword(s):  
1987 ◽  
Vol 40 (12) ◽  
pp. 1923 ◽  
Author(s):  
ID Rae ◽  
ID Rae ◽  
A Staffa ◽  
A Staffa ◽  
AC Diz ◽  
...  

In order to obtain a deeper insight into the title effect, several compounds with an F atom very close to a C-H of a nearby functional group were synthesized and the relevant couplings measured. The most conspicuous case was that of 8-fluoro-2-hydroxynaphthalene-1-carbaldehyde where a close proximity between the F and H atoms is the result of fluorine-oxygen repulsion and the formation of an intramolecular hydrogen bond between the hydroxyl and carbonyl groups. The experimental four-bond J(F,CHO) coupling is 26.2 Hz. A compound very similar to this one, but without the OH group, was chosen on which to perform a polarization propagator analysis of the through-space (TS) coupling pathways, at the RPA-INDO level. The expression for the TS coupling in terms of the projected polarization propagator and perturbators was numerically analysed. It is found that this coupling is completely dominated by a TS component of the Fermi contact (FC) term, the main features of which are: ( i ) It decays exponentially with the F-H distance; (ii) Its main contribution comes from an electron excitation involving the F lone-pair, the C-H bond of the CHO moiety and its corresponding antibonding orbital;(iii) The π-type lone-pair does not contribute to the TS coupling pathway of the FC term.


2009 ◽  
Vol 87 (7) ◽  
pp. 1090-1101 ◽  
Author(s):  
Fu Chen ◽  
Se-Woung Oh ◽  
Roderick E. Wasylishen

High-resolution solid-state 31P NMR spectroscopy was used to investigate a series of 1:1 silver–triphenylphosphine complexes, [Ph3PAgX]n, where X is a monovalent anion and n = 1, 2, 3, 4, or ∞. The 31P CP MAS NMR spectra reveal the number of distinct phosphorus sites in these complexes as well as the |1J(109Ag,31P)| values, which range from 401 ± 10 Hz (X = N3–) to 869 ± 10 Hz (X = SO3CF3–). The data obtained here and in earlier investigations indicate that |1J(109Ag,31P)| values for silver–tertiary phosphine complexes decrease as Ag–P bond lengths increase. This experimental conclusion is supported by DFT calculations, which also indicate that the Fermi-contact mechanism is the only important spin–spin coupling mechanism for 1J(109Ag,31P) in these complexes. In addition, the crystal structure of a silver–triphenylphosphine trifluoroacetate tetramer was determined using X-ray crystallography, and the structure of a silver–triphenylphosphine chloride tetramer was reinvestigated.


1970 ◽  
Vol 92 (7) ◽  
pp. 1871-1875 ◽  
Author(s):  
Dennis G. Brown ◽  
Russell S. Drago
Keyword(s):  

2007 ◽  
Vol 62 (2) ◽  
pp. 220-224 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Oleg L. Tok

Boron-nitrogen compounds were studied with respect to indirect nuclear 15N-11B spin-spin coupling (1J(15N,11B)). Some new experimental data were determined for aminoboranes and tetra-Npyrrolylborate, and a variety of compounds with B-N single, double and triple bonds were examined using DFT methods for the calculation of 1J(15N,11B) at the B3LYP/6-311+G(d,p) level of theory. The calculations predict magnitude and sign of 1J(15N,11B) reasonably well, and the Fermi contact term was found to be dominant. A positive sign of 1J(15N,11B) was calculated in the case of 1-azacloso- dodecaborane(12), in contrast to all other compounds studied.


1985 ◽  
Vol 38 (12) ◽  
pp. 1779 ◽  
Author(s):  
RH Contreras ◽  
CG Giribet ◽  
MA Natiello ◽  
J Perez ◽  
ID Rae ◽  
...  

Calculations by the IPPP-INDO method give the spin-spin coupling constants for the side-chain carbons, 3JCF and 4JCF, as 4.97 and 6.86 Hz respectively with substantial contributions to through-space coupling from the pathway CO-C-H…F. The observed values for 1-(2- fluorophenyl ) ethanone , 3.3 and 7.2 Hz, and for 1-(2,5- difluorophenyl ) ethanone , 3.7 and 7.3 Hz, are in good agreement with these predictions. Two compounds, a dihydroindenone and a naphthalenone, in which this pathway cannot be effective, show no fluorine coupling to the aliphatic carbon next to the carbonyl and the values of 3JCF are reduced to 2.2 and 2.5 Hz, consistent with the loss of a through-space Fermi contact term of the kind described above.


1973 ◽  
Vol 95 (24) ◽  
pp. 7956-7961 ◽  
Author(s):  
Keith F. Purcell ◽  
Richard L. Martin

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Adebayo A. Adeniyi ◽  
Peter A. Ajibade

The changes in the interatomic distances and the corresponding spin-spin coupling as a result of the hydrolysis of the ruthenium complexes and the effects of different derivatives of the pyrazole ligands and the substituents methyl, carboxylic, and phenyl on the pyrazole rings were studied. A good agreement was obtained between the experimental and the theoretical proton NMR. Significant changes are observed in the isotropic and anisotropic shielding tensor of the atoms and related spin-spin coupling of their bonds due to hydrolysis of the complexes. This observation gives more insight into the known mechanism of activation of the ruthenium complexes by hydrolysis. There are no direct effects of interatomic distances on many of the computed spin-spin couplings with the exception of1J(Ru-N) which shows significant changes especially within the pair of1J(Ru-N) in the complexes with two nitrogen atoms of the bis-pyrazole moiety. The magnitude of interatomic spin-spin coupling of the Ru-X follows the order of Ru-Cl > Ru-N > Ru-C > Ru-O. The Ramsey term Fermi contact (FC) has the most significant contribution in most of the computed spin-spin interactions except in1J(Ru-Cl) and1J(N-N⁎) which are predominantly defined by the contribution from the paramagnetic spin orbit (PSO).


2019 ◽  
Vol 966 ◽  
pp. 222-228 ◽  
Author(s):  
Wan Nurfadhilah Zaharim ◽  
Shukri Sulaiman ◽  
Siti Nuramira Abu Bakar ◽  
Nur Eliana Ismail ◽  
Harison Rozak ◽  
...  

The DFT cluster method was employed to investigate the electronic structures and muonium hyperfine interactions in guanine nucleobase and nucleotide using three different basis sets. The total energy and Fermi contact values were calculated for muon trapped at carbon '8'. The three basis sets, 6-31G, 6-311G and 6-311G(d,p), were used in tandem with the B3LYP functional. There are significant quantitative differences in the calculated total energy. 6-311G(d,p) produced the lowest total energy as compared to the other basis sets. The lowering of the total energy is due to the increase in the number of basis functions to describe the atomic orbitals, which is consistent with the postulate on basis set completeness. The 6-31G basis set produced the muon Fermi contact value that is the closest to the experimental value. The calculated Fermi contact values for the nucleobase and nucleotide are significantly lowered in going from the double-zeta to the triple-zeta basis set by 5% and 4% respectively. The lowering of the Fermi contact value can be attributed to the extension of the triple-zeta basis set in describing the valence atomic orbitals. The presence of the sugar phosphate group in the nucleotide instead of the methyl group tends to lower the Fermi contact value. Thus, the sugar phosphate group should be taken into consideration when designing a calculation model.


1973 ◽  
Vol 28 (11) ◽  
pp. 1866-1868 ◽  
Author(s):  
W. Sänger ◽  
J. Voitländer

The Fermi contact contribution to the nuclear spin-spin coupling constant of HD is calculated variationally. Instead of the delta-function a modified nonsingular contact spatial part is used. The self-coupling energy becomes finite and the variation of the whole second-order energy due to a non- singular first-order perturbed trial function can be carried out.


Sign in / Sign up

Export Citation Format

Share Document