Nanotribology: Heat Production and Dissipative Processes in Friction

2005 ◽  
pp. 310-315
Author(s):  
R. Bassani ◽  
M. D'Acunto
2018 ◽  
Vol 52 (5) ◽  
pp. 401-413 ◽  
Author(s):  
Chuanqing Zhu ◽  
Ming Xu ◽  
Nansheng Qiu ◽  
Shengbiao Hu

2018 ◽  
Vol 14 (3) ◽  
pp. 5708-5733 ◽  
Author(s):  
Vyacheslav Michailovich Somsikov

The analytical review of the papers devoted to the deterministic mechanism of irreversibility (DMI) is presented. The history of solving of the irreversibility problem is briefly described. It is shown, how the DMI was found basing on the motion equation for a structured body. The structured body was given by a set of potentially interacting material points. The taking into account of the body’s structure led to the possibility of describing dissipative processes. This possibility caused by the transformation of the body’s motion energy into internal energy. It is shown, that the condition of holonomic constraints, which used for obtaining of the canonical formalisms of classical mechanics, is excluding the DMI in Hamiltonian systems. The concepts of D-entropy and evolutionary non-linearity are discussed. The connection between thermodynamics and the laws of classical mechanics is shown. Extended forms of the Lagrange, Hamilton, Liouville, and Schrödinger equations, which describe dissipative processes, are presented.


1935 ◽  
Vol 69 (724) ◽  
pp. 461-466 ◽  
Author(s):  
C. T. Hurst ◽  
C. R. Walker
Keyword(s):  

2019 ◽  
Vol 97 (7) ◽  
pp. 3056-3070 ◽  
Author(s):  
Emily A Petzel ◽  
Evan C Titgemeyer ◽  
Alexander J Smart ◽  
Kristin E Hales ◽  
Andrew P Foote ◽  
...  

AbstractTwo experiments were conducted to measure rates of ruminal disappearance, and energy and nutrient availability and N balance among cows fed corn husks, leaves, or stalks. Ruminal disappearance was estimated after incubation of polyester bags containing husks, leaves or stalks in 2 separate ruminally cannulated cows in a completely randomized design. Organic matter (OM) that initially disappeared was greatest for stalks and least for husks and leaves (P < 0.01), but amounts of NDF that initially disappeared was greatest for husks, intermediate for stalks, and least for leaves (P < 0.01). Amounts of DM and OM that slowly disappeared were greatest in husks, intermediate in leaves, and least in stalks (P < 0.01). However, amounts of NDF that slowly disappeared were greatest in leaves, intermediate in husks, and least in stalks (P < 0.01). Rate of DM and OM disappearance was greater for leaves, intermediate for husks and least for stalks, but rate of NDF disappearance was greatest for stalks, intermediate for leaves, and least for husks (P < 0.01). Energy and nutrient availability in husks, leaves, or stalks were measured by feeding ruminally cannulated cows husk-, leaf-, or stalk-based diets in a replicated Latin square. Digestible energy lost as methane was less (P = 0.02) when cows were fed leaves in comparison to husks or stalks, and metabolizable energy (Mcal/kg DM) was greater (P = 0.03) when cows were fed husks and leaves compared with stalks. Heat production (Mcal/d) was not different (P = 0.74) between husks, leaves, or stalks; however, amounts of heat produced as a proportion of digestible energy intake were less (P = 0.05) among cows fed leaves in comparison to stalks or husks. Subsequently, there was a tendency (P = 0.06) for net energy available for maintenance from leaves (1.42 Mcal/kg DM) to be greater than stalks (0.91 Mcal/kg DM), and husks (1.30 Mcal/kg DM) were intermediate. Nitrogen balance was greater when cows were fed leaves, intermediate for husks, and least for stalks (P = 0.01). Total tract digestion of NDF was greater (P < 0.01) for husks and leaves compared with stalks. Husks had greater (P = 0.04) OM digestibility in comparison to stalks, and leaves were intermediate. Apparently, greater production of methane from husks in comparison to leaves limited amounts of energy available for maintenance from husks even though total-tract nutrient digestion was greatest when cows were fed husks or leaves.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 143-143
Author(s):  
Holland C Dougherty ◽  
Hutton Oddy ◽  
Mark Evered ◽  
James W Oltjen

Abstract Target protein mass at maturity is a common “attractor” used in animal models to derive components of animal growth. This target muscle protein at maturity, M*, is used as a driver of a model of animal growth and body composition with pools representing muscle and visceral protein; where viscera is heart, lungs, liver, kidneys, reticulorumen and gastrointestinal tract; and muscle is non-visceral protein. This M* term then drives changes in protein mass and heat production, based on literature data stating that heat production scales linearly with protein mass but not liveweight. This led us to adopt a modelling approach where energy utilization is directly related to protein content of the animal, and energy not lost as heat or deposited as protein is fat. To maintain continuity with existing feeding systems we estimate M* from Standard Reference Weight (SRW) as follows: M* (kJ) = SRW * SHRINK * (1-FMAT) * (MUSC) * (CPM)* 23800. Where SRW is standard reference weight (kg), SHRINK is the ratio of empty body to live weight (0.86), FMAT is proportion of fat in the empty body at maturity (0.30), MUSC is the proportion of empty body protein that is in muscle (0.85), CPM is the crude protein content of fat-free muscle at maturity (0.21), and 23800 is the energetic content (kJ) of a kilogram of crude protein. Values for SHRINK, FMAT, MUSC and CPM were derived from a synthesis of our own experimental data and the literature. For sheep, these values show M* to be: M* (kJ) = SRW * 0.86* (1-0.3) * 0.85 * 0.21 *23800 = SRW * 2557. This method allows for use of existing knowledge regarding standard reference weight and other parameters in estimating target muscle mass at maturity, as part of a model of body composition and performance in ruminants.


2010 ◽  
Vol 495 (2) ◽  
pp. 352-355 ◽  
Author(s):  
Sándor Hóbor ◽  
Zsolt Kovács ◽  
Ádám Révész

Sign in / Sign up

Export Citation Format

Share Document