Application of Quality by Design and Risk Assessment Principles for the Development of Formulation Design Space

Author(s):  
Kingman Ng ◽  
Natarajan Rajagopalan
2020 ◽  
Vol 32 (9) ◽  
pp. 2158-2164
Author(s):  
JALIL K. SHAIKH ◽  
MAZAHAR FAROOQUI ◽  
UMMUL KHAIR ASEMA SYED

Quality by design approach has been used to develop simple, rapid, sensitive gradient RP-HPLC stability indicating method for fosaprepitant dimeglumine and its related impurities. The chromatographic method has been developed by using symmetry shield RP-18 (250 mm × 4.6 mm; 5 μm) column maintained at column temperature of 20 ºC. The mobile phase-A consisted of water and acetonitrile (800:200, v/v), added 2 mL of orthophosphoric acid and 0.17 g of tetrabutylammonium hydrogen sulphate. The mobile phase-B consisted of water and acetonitrile (200:800, v/v), added 2 mL of orthophosphoric acid and 0.17 g of tetrabutylammonium hydrogen sulphate. Gradient program was executed as time (min)/% MP-A: 0/80, 3/80, 12/40, 20/20, 24/20, 25/80, and 30/80. The UV detection was carried out at wavelength 210 nm and 20 μL of sample was injected. Sample cooler was maintained at 5 ºC. Stability of fosaprepitant dimeglumine sample was investigated in different stress condition as acid, base, oxidation, thermal, humidity and photolytic. The method was developed in two phases, screening and optimization. During the screening phase, the most suitable stationary phase, organic modifier, and solvent were identified based on the behaviour of each stationary phase with fosaprepitant dimeglumine and its impurities using each buffer and solvent. Total 18 experiments were performed to find out the best experimental condition. The optimization was done for secondary influential parameters like column temperature, gradient program, using six experiments to examine multifactorial effects of system suitability parameters and generated design space representing the robust region. A verification experiment was performed within the working design space and the model was accurate. Drug showed unstable behaviour under acid, base, oxidation, thermal, and humidity conditions. Apripetant was found as major degradation impurity. The method was validated as per ICH guideline for specificity, limit of detection (LOD), limit of quantitation (LOQ), linearity, accuracy, precision, ruggedness and robustness. Correlation coefficient is about 0.999 for all impurities, recovery is between 90% to 103% at all level. LOD value of each impurity is less than 0.01% w/w. DOE statistically based experimental designs proved to be an important approach in optimizing selectivity-controlling parameters for the organic impurities determination in FD API. The method was found to be specific, linear, accurate, precise and robust. The peak purity test results confirmed that the fosaprepitant dimeglumine peak was homogenous in all stress samples and the mass balance was found to be more than 99%, thus proving the stability indicating power of the method. Present method is found to be suitable for routine analysis in quality control laboratory.


2022 ◽  
Vol 24 (1) ◽  
pp. 273-287
Author(s):  
Nikita R.Nikam ◽  
◽  
Yogita M. Kolekar ◽  

Some ancient medications were used to make the hair care herbal shampoo powder. Organoglytics, powder characteristics, foam test, and physical evaluation were performed on Tulsi, Shikakai, Heena, Bahera, Amla, Neem, and Brahmi. Existing inspections will assist set standards and assessment criteria, which will undoubtedly aid to standardise the quality and purity of these herbal powder shampoos, due to the selection of drugs once the drugs are used together or jointly. We optimise the formula with the help of the Design of Experiments as per the Quality by Design approach. This paper illustrates broad theoretical as well as practical view of advanced screening design. In addition to the statistical concept‟s regression analysis, parato chart, residual diagnosis, main effect plot, interaction effect plot, design space and multiple response prediction.


2019 ◽  
Vol 9 (1) ◽  
pp. 237-243
Author(s):  
Asish Dev ◽  
Jayesh Dwivedi ◽  
Munira Momin

Objective: The proposed study is focussed at developing acyclovir microemulsions for topical drug delivery systems.  QbD was applied for better understanding of the process and to generate design space, using quality target product profile, critical quality attributes, and risk assessment. The aim of the experiment is to prepare a safe, efficacious, stable and patient compliant microemulsion dosage form of Acyclovir. Materials and methods: Pre-formulation studies were carried out which helped in developing a suitable dosage form. UV, FTIR and DSC studies were done for pre-formulation and post-formulation evaluations. QbD was applied to generate design space, using QTPP, CQA, and risk assessment. Microemulsions of acyclovir were developed by using 32 factorial designs. Pseudo terneary phase diagrams were constructed to screen various surfactants and co-surfactants for the preparation of microemulsions. Two independent variables Oil Concentration (X1) and Smix Concentration (X2) at three levels low, medium and high were selected and response surface plots were generated. The microemulsions were prepared by plotting pseudo terneary phase diagrams. Various characterizations that were carried out include % transmittance, Viscosity and % drug release. Statistical analyses of batches and surface response studies were done to understand the effect of various independent variables on the dependent variables. Results and Discussions: The λmax was confirmed at 251 nm by UV spectroscopy. The melting point was determined experimentally to be 2460C which confirms the drug to be Acyclovir. FTIR and DSC studies confirmed that the drug is Acyclovir.  Conclusion: The study indicates that microemulsions of Acyclovir by QbD approach were successfully developed. Keywords: Microemulsion, Acyclovir, DoE, QbD


Sign in / Sign up

Export Citation Format

Share Document