Cell Lineage and Cell States in the Drosophila Embryo

Author(s):  
Peter A. Lawrence
Development ◽  
1976 ◽  
Vol 35 (3) ◽  
pp. 607-616
Author(s):  
W. J. Gehring ◽  
E. Wieschaus ◽  
M. Holliger

The primordial germ cells and the gonadal mesoderm were mapped in the Drosophila embryo by analyzing the patterns of mosaicism in ‘normal’ and ‘transformed’ gynandromorphs. Relative to the adult cuticular markers the germ cells map as the posterior moststructure, which coincides with their known location in the blastoderm embryo. These data support the hypothesis that the gynandromorph map reflects the real position of the pri-mordia in the embryo. Since after the blastoderm stage the primordial germ cells migrateanteriorly these data also indicate that the map in fact corresponds to the blastoderm stageand not to a later stage of development. The genital disc maps as a single median primordium anterior and ventral to the germ cells, the gonadal mesoderm is located anterior to the genital disc and also forms a single median primordium on the ventral side of the embryo. The primordia for the genital disc and the gonadal mesoderm are unusually large in size, which presumably reflects some indeterminacy of the cell lineage leading to an ‘expansion’ of the map.


Development ◽  
1998 ◽  
Vol 125 (17) ◽  
pp. 3301-3312 ◽  
Author(s):  
J.B. Skeath

The segmented portion of the Drosophila embryonic central nervous system develops from a bilaterally symmetrical, segmentally reiterated array of 30 unique neural stem cells, called neuroblasts. The first 15 neuroblasts form about 30–60 minutes after gastrulation in two sequential waves of neuroblast segregation and are arranged in three dorsoventral columns and four anteroposterior rows per hemisegment. Each neuroblast acquires a unique identity, based on gene expression and the unique and nearly invariant cell lineage it produces. Recent experiments indicate that the segmentation genes specify neuroblast identity along the AP axis. However, little is known as to the control of neuroblast identity along the DV axis. Here, I show that the Drosophila EGF receptor (encoded by the DER gene) promotes the formation, patterning and individual fate specification of early forming neuroblasts along the DV axis. Specifically, I use molecular markers that identify particular neuroectodermal domains, all neuroblasts or individual neuroblasts, to show that in DER mutant embryos (1) intermediate column neuroblasts do not form, (2) medial column neuroblasts often acquire identities inappropriate for their position, while (3) lateral neuroblasts develop normally. Furthermore, I show that active DER signaling occurs in the regions from which the medial and intermediate neuroblasts will later delaminate. In addition, I demonstrate that the concomitant loss of rhomboid and vein yield CNS phenotypes indistinguishable from DER mutant embryos, even though loss of either gene alone yields minor CNS phenotypes. These results demonstrate that DER plays a critical role during neuroblast formation, patterning and specification along the DV axis within the developing Drosophila embryonic CNS.


Development ◽  
1990 ◽  
Vol 109 (2) ◽  
pp. 425-433 ◽  
Author(s):  
B. Hay ◽  
L.Y. Jan ◽  
Y.N. Jan

Cytoplasm at the posterior pole of the early Drosophila embryo, known as polar plasm, serves as a source of information necessary for germ cell determination and for specification of the abdominal region. Likely candidates for cytoplasmic elements important in one or both of these processes are polar granules, organelles concentrated in the cortical cytoplasm of the posterior pole. Females homozygous for any one of the maternal-effect mutations, tudor, oskar, staufen, vasa, or valois give rise to embryos that lack localized polar granules, fail to form the germ cell lineage and have abdominal segment deletions. Using antibodies against a polar granule component, the vasa protein, we find that vasa synthesis or localization is affected by these mutations. In vasa mutants, synthesis of vasa protein is absent or severely restricted. In oskar and staufen mutant females, vasa synthesis appears normal, but the vasa protein is not localized. In tudor and valois mutant females, vasa is localized to the posterior pole of oocytes, but this localization is lost following egg activation. In addition to the posterior localized vasa, there is a low level of vasa distributed throughout the embryo. A function for this distributed vasa is postulated based on the observation that embryos from Bicaudal-D mothers, in which abdominal determinants are incorrectly localized to the anterior pole, do not show any ectopic vasa localization, though abdomen development at the anterior end depends on the amount of vasa protein in the embryo.


Author(s):  
William Theurkauf

Cell division in eucaryotes depends on coordinated changes in nuclear and cytoskeletal components. In Drosophila melanogaster embryos, the first 13 nuclear divisions occur without cytokinesis. During the final four divisions, nuclei divide in a uniform monolayer at the surface of the embryo. These surface divisions are accompanied by dramatic changes in cortical actin and microtubule structure (Karr and Alberts, 1986), and inhibitor studies indicate that these changes are essential to orderly mitosis (Zalokar and Erk, 1976). Because the early embryo is syncytial, fluorescent probes introduced by microinjection are incorporated in structures associated with all of the nuclei in the blastoderm. In addition, the nuclei divide synchronously every 10 to 20 min. These characteristics make the syncytial blastoderm embryo an excellent system for the analysis of mitotic reorganization of both nuclear and cytoskeletal elements. However, the Drosophila embryo is a large cell, and resolution of cytoskeletal filaments and nuclear structure is hampered by out-of focus signal.


1994 ◽  
Vol 72 (suppl_3) ◽  
pp. 9-15 ◽  
Author(s):  
B. A. Croy ◽  
Z. M. Yu ◽  
G. J. King

Sign in / Sign up

Export Citation Format

Share Document