Heat Stress in Dairy Cattle

2008 ◽  
pp. 88-94
Author(s):  
J. K. Shearer
Keyword(s):  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Shi ◽  
Luiz Fernando Brito ◽  
Aoxing Liu ◽  
Hanpeng Luo ◽  
Ziwei Chen ◽  
...  

Abstract Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1, KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC, and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 168-168
Author(s):  
Melissa S Roths ◽  
Megan A Abeyta ◽  
Tori Rudolph ◽  
Brittany Wilson ◽  
Matthew B Hudson ◽  
...  

Abstract Heat stress (HS) occurs when internal body temperatures are elevated above a thermoneutral zone in response to extreme environmental temperatures. In the U.S. dairy industry, HS results in economic loss due to decreased feed intake, milk quality, and milk yield. Previous work has demonstrated increased plasma urea nitrogen in heat stressed dairy cattle which is thought to originate from increased skeletal muscle proteolysis, however this has not been empirically established. The objective of this investigation was to determine the extent to which HS promotes proteolysis in skeletal muscle of dairy cattle. We hypothesized HS would increase activation of the calpain and proteasome systems in skeletal muscle. To test this hypothesis, following a 3-d acclimation period in individual box stalls, all lactating dairy cows were held under thermoneutral (TN) conditions for 4-d for collection of baseline measures and then exposed to TN or HS conditions for 7-d followed by a biopsy of semitendinosus (n=8/group). To induce HS, cattle were fitted with electric heating blankets, which they wore for the duration of the heating period. This approach increased rectal temperature 1.1°C (P< 0.05), respiratory rate by 33 bpm (P< 0.05), plasma urea nitrogen by 19% (P=0.08) and milk urea nitrogen by 26% (P< 0.05), and decreased dry matter intake by 32% (P< 0.05) and milk production by 26% (P< 0.05) confirming HS. Contrary to our expectations, we discovered that calpain I and II abundance and activation, and calpain activity were similar between groups. Likewise, protein expression of E3 ligases, MafBx and Murf1, were similar between groups as was total ubiquitinated proteins and proteasome activity. Collectively, and counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7-d of HS. These data question the presumed dogma that increased blood urea nitrogen is due to elevated proteolysis in skeletal muscle.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206520 ◽  
Author(s):  
Elena Galán ◽  
Pol Llonch ◽  
Arantxa Villagrá ◽  
Harel Levit ◽  
Severino Pinto ◽  
...  

2020 ◽  
Vol 103 (9) ◽  
pp. 8576-8586
Author(s):  
Thiago F. Fabris ◽  
Jimena Laporta ◽  
Amy L. Skibiel ◽  
Bethany Dado-Senn ◽  
Stephanie E. Wohlgemuth ◽  
...  

2021 ◽  
Vol 34 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Renata Negri ◽  
Ignacio Aguilar ◽  
Giovani Luis Feltes ◽  
Juliana Dementshuk Machado ◽  
José Braccini Neto ◽  
...  

Objective: Considering the importance of dairy farming and the negative effects of heat stress, more tolerant genotypes need to be identified. The objective of this study was to investigate the effect of heat stress via temperature-humidity index (THI) and diurnal temperature variation (DTV) in the genetic evaluations for daily milk yield of Holstein dairy cattle, using random regression models.Methods: The data comprised 94,549 test-day records of 11,294 first parity Holstein cows from Brazil, collected from 1997 to 2013, and bioclimatic data (THI and DTV) from 18 weather stations. Least square linear regression models were used to determine the THI and DTV thresholds for milk yield losses caused by heat stress. In addition to the standard model (SM, without bioclimatic variables), THI and DTV were combined in various ways and tested for different days, totaling 41 models.Results: The THI and DTV thresholds for milk yield losses was THI = 74 (–0.106 kg/d/THI) and DTV = 13 (–0.045 kg/d/DTV). The model that included THI and DTV as fixed effects, considering the two-day average, presented better fit (–2logL, Akaike information criterion, and Bayesian information criterion). The estimated breeding values (EBVs) and the reliabilities of the EBVs improved when using this model.Conclusion: Sires are re-ranking when heat stress indicators are included in the model. Genetic evaluation using the mean of two days of THI and DTV as fixed effect, improved EBVs and EBVs reliability.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Konstantinos V. Arsenopoulos ◽  
Eleftherios Triantafillou ◽  
Athanasios I. Gelasakis ◽  
Elias Papadopoulos

Fly infestation remains a universal problem for dairy cattle herds, affecting the animals’ health and welfare status. Pre-weaned dairy calves are significantly challenged by the direct and indirect consequences of severe fly infestation, heat-stress and their interaction, which contribute to a stressful and fatiguing environment. Among several physiological, behavioral, clinical and biochemical traits, serum cortisol (SC) and creatine kinase (CK) levels, as well as feed consumption can be used as valid indicators of potential stressful and fatiguing conditions and, therefore, can be efficiently used for stress analysis studies. Hence, the objective of the study was to assess the fly-repellency effect of deltamethrin on pre-weaned dairy calves exposed to heat stress conditions, as well as its association with SC, CK concentrations and feed consumption. Two commercial dairy cattle herds of the Holstein breed in Central Macedonia (Greece) were involved in the study during summer months and under heat stress conditions. Deltamethrin administration resulted in (i) a decreased fly population (100% Musca domestica) landing on pre-weaned dairy calves, (ii) a reduced SC (stress indicator) and CK (fatigue indicator) concentration, and (iii) an increased consumption of feedstuff in deltamethrin treated animals compared to the untreated ones.


Sign in / Sign up

Export Citation Format

Share Document