Light Interception and Utilization by Orchard Systems

2011 ◽  
pp. 208-267 ◽  
Author(s):  
John E. Jackson
Keyword(s):  
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


Crop Science ◽  
1998 ◽  
Vol 38 (3) ◽  
pp. 827-834 ◽  
Author(s):  
I. C. Madakadze ◽  
B. E. Coulman ◽  
P. Peterson ◽  
K. A. Stewart ◽  
R. Samson ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 176
Author(s):  
Huanxuan Chen ◽  
Xinxin Zhao ◽  
Yingchun Han ◽  
Fangfang Xing ◽  
Lu Feng ◽  
...  

Modification of the cotton canopy results in shade avoidance and competition for light, which shows that density and spatial arrangement of cotton have a great impact on light interception. This experiment was conducted in 2018 and 2019 in the experimental field at the Institute of Cotton Research of Chinese Academy of Agricultural Science in Anyang city, Henan Province, China. Six plant densities of cotton variety SCRC28 were used to assess spatial competition for light in cotton populations during the whole growing period. Light interception data were collected and analyzed according to the spatial grid method and the extension of Simpson’s 3/8 rule. The results showed that at the bottom of the canopy, greater light interception was observed at high densities than at low densities, while in the external part of the layer of the canopy in the horizontal direction, low light interception was recorded at low densities. Leaf area, aboveground biomass and plant height were obviously correlated with light interception, and the cotton population with a higher density (8.7 plants m−2) performed best at the light interception competition, and with the highest yield. The results will provide guidance on light management through the optimization of the structure of the canopy to provide more solar radiation and a significant basis by which to improve the management of light and canopy architecture.


2021 ◽  
Vol 262 ◽  
pp. 108054
Author(s):  
Tao Zhou ◽  
Li Wang ◽  
Xin Sun ◽  
Xiaochun Wang ◽  
Tian Pu ◽  
...  

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 26-27
Author(s):  
Caroline Chappell ◽  
Landon Marks ◽  
Katie Mason ◽  
Mary K Mullenix ◽  
Sandra L Dillard ◽  
...  

Abstract A 2-yr study was conducted at Black Belt Research and Extension Center in Marion Junction, AL, to evaluate the effect of nitrogen (N) fertilizer application rate on forage production characteristics, nutritive value, and animal performance of beef heifers grazing a mixture of native warm-season grasses (NWSG) including big bluestem, little bluestem, and indiangrass. Six, two-hectare plots were randomly assigned to one of two treatments (0 or 67 kg N ha-1 applied in early April; n = 3 replications per treatment). Paddocks were continuously stocked with four weaned Angus × Simmental beef heifers (initial BW 288 ± 7 kg) from late May/early June through mid-to-late August during 2018 (73 grazing d) and 2019 (70 grazing d), respectively. Put-and-take cattle were used to manage forage to a target of 38 cm. Forage mass and canopy heights were collected every two weeks during the trial. Visual ground cover ratings, canopy light interception, and botanical composition were measured at the beginning and end of the trial in each year. Hand-plucked samples were collected every two weeks during the grazing trial to determine forage nutritional value. Data were analyzed using the PROC MIXED procedure in SAS 9.4, and differences were declared significant when P ≤ 0.05. Nitrogen fertilized NWSG had greater crude protein (P < 0.0001), sward heights (P = 0.0003), and canopy light interception at the beginning of the season (P = 0.0049) compared to non-fertilized paddocks. However, there were no differences (P ≥ 0.05) among N-fertility treatments for mean forage mass, heifer ADG, or BCS across the 2-yr study. Botanical composition data indicated that indiangrass decreased from 64% to 61% (P = 0.0022) and weed pressure increased from 11% to 15% (P = 0.0064) across the summer grazing season. Canopy light interception decreased by 51% from early June to August in fertilized NWSG and 26% in unfertilized paddocks, respectively. These data illustrate that NWSG systems may provide a viable grazing system in the summer months under reduced N inputs.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 101-110 ◽  
Author(s):  
S. Sridhara ◽  
T.G. Prasad

SUMMARYA field experiment was conducted at Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore to study the effect of irrigation regimens on the biomass accumulation, canopy development, light interception and radiation use efficiency of sunflower. The treatments includes irrigating the plants at 0.4, 0.6, 0.8 and 1.0 cumulative pan evaporation. The results indicated that the aboveground biomass, canopy development, radiation interception and radiation use efficiency were influenced favorably by the irrigation regimens. Irrespective of the irrigation regimen, the radiation use efficiency of sunflower increased from 15 DAS to 75 DAS and then tended to decline. The decrease in RUE after anthesis is coupled with decrease in leaf nitrogen content. In general the RUE of sunflower ranged from 0.49 g MJ-1 to 1.84 g MJ-1 at different growth stages. The light transmission within the canopy increased exponentially with plant height and the canopy extension coefficient is found to be 0.8.


2021 ◽  
Author(s):  
Laura J. Williams ◽  
Ethan E. Butler ◽  
Jeannine Cavender‐Bares ◽  
Artur Stefanski ◽  
Karen E. Rice ◽  
...  

2021 ◽  
Vol 483 ◽  
pp. 118908
Author(s):  
Mizanur Rahman ◽  
Masum Billah ◽  
Md Obydur Rahman ◽  
Debit Datta ◽  
Muhammad Ahsanuzzaman ◽  
...  

2016 ◽  
Vol 53 (2) ◽  
pp. 210-225 ◽  
Author(s):  
GUILHERME M. TORRES ◽  
ADRIAN KOLLER ◽  
RANDY TAYLOR ◽  
WILLIAM R. RAUN

SUMMARYSeed-oriented planting provides a manner to influence canopy structure. The purpose of this research was to improve maize light interception using seed-oriented planting to manipulate leaf azimuth across the row thereby minimizing leaf overlap. To achieve leaf azimuths oriented preferentially across the row, seeds were planted: (i) upright with caryopsis pointed down, parallel to the row (upright); and (ii) laying flat, embryo up, perpendicular to the row (flat). These treatments were compared to conventionally planted seeds with resulting random leaf azimuth distribution. Seed orientation effects were contrasted with three levels of plant population and two levels of hybrid specific canopy structures. Increased plant population resulted in greater light interception but yield tended to decrease as plant population increased. The planophile hybrid produced consistently greater yields than the erectophile hybrid. The difference between planophile and erectophile hybrids ranged from 283 to 903 kg ha−1. Overall, mean grain yield for upright and flat seed placement increased by 351 and 463 kg ha−1 compared to random seed placement. Greater cumulative intercepted photosynthetically active radiation (CIPAR) was found for oriented seeds rather than random-oriented seeds. At physiological maturity upright, flat and random-oriented seeds intercepted 555, 525 and 521 MJ m−2 of PAR, respectively. Maize yield responded positively to improved light interception and better radiation use efficiency. Under irrigated conditions, precision planting of maize increased yield by 9 to 14% compared to random-oriented seeds.


Sign in / Sign up

Export Citation Format

Share Document