A Brief Description of the VINCERA Project; Vulnerability and Impacts of North American Forests to Climate Change

Author(s):  
David T. Price ◽  
Daniel Scott ◽  
Mark R. Lomas ◽  
Daniel W. McKenney ◽  
Dominique Bachelet ◽  
...  
Paleobiology ◽  
2000 ◽  
Vol 26 (sp4) ◽  
pp. 259-288 ◽  
Author(s):  
John Alroy ◽  
Paul L. Koch ◽  
James C. Zachos

EcoHealth ◽  
2015 ◽  
Vol 12 (4) ◽  
pp. 713-725 ◽  
Author(s):  
Joseph P. Dudley ◽  
Eric P. Hoberg ◽  
Emily J. Jenkins ◽  
Alan J. Parkinson

Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 257
Author(s):  
Joel Ralston ◽  
William V. DeLuca

Many North American boreal forest birds reach the southern periphery of their distribution in the montane spruce–fir forests of northeastern United States and the barren coastal forests of Maritime Canada. Because the southern periphery may be the first to be impacted by warming climates, these populations provide a unique opportunity to examine several factors that will influence the conservation of this threatened group under climate change. We discuss recent research on boreal birds in Northeastern US and in Maritime Canada related to genetic diversity, population trends in abundance, distributional shifts in response to climate change, community composition, and threats from shifting nest predators. We discuss how results from these studies may inform the conservation of boreal birds in a warming world as well as open questions that need addressing.


Author(s):  
Brooke L. Bateman ◽  
Chad Wilsey ◽  
Lotem Taylor ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

2008 ◽  
Vol 122 (2) ◽  
pp. 169
Author(s):  
Donald McAlpine ◽  
James D. Martin ◽  
Cade Libby

The first occurrence in New Brunswick of the Grey Fox (Urocyon cinereoargenteus), a threatened species in Canada, is documented based on a 4.3 kg subadult male trapped in the southwestern corner of the province. This is an approximate range extension of 135 km from the most northerly Maine occurrence and may reflect a larger North American range expansion underway since 1930-40, perhaps in response to warming climate.


Author(s):  
Brian J. Stocks ◽  
Michael A. Fosberg ◽  
Michael B. Wotton ◽  
Timothy J. Lynham ◽  
Kevin C. Ryan

2016 ◽  
Vol 56 (4) ◽  
pp. 545-575 ◽  
Author(s):  
Charles A. Backman ◽  
Alain Verbeke ◽  
Robert A. Schulz

Effective public policy to mitigate climate change footprints should build on data-driven analysis of firm-level strategies. This article’s conceptual approach augments the resource-based view (RBV) of the firm and identifies investments in four firm-level resource domains (Governance, Information management, Systems, and Technology [ GISTe]) to develop capabilities in climate change impact mitigation. The authors denote the resulting framework as the GISTe model, which frames their analysis and public policy recommendations. This research uses the 2008 Carbon Disclosure Project (CDP) database, with high-quality information on firm-level climate change strategies for 552 companies from North America and Europe. In contrast to the widely accepted myth that European firms are performing better than North American ones, the authors find a different result. Many firms, whether European or North American, do not just “talk” about climate change impact mitigation, but actually do “walk the talk.” European firms appear to be better than their North American counterparts in “walk I,” denoting attention to governance, information management, and systems. But when it comes down to “walk II,” meaning actual Technology-related investments, North American firms’ performance is equal or superior to that of the European companies. The authors formulate public policy recommendations to accelerate firm-level, sector-level, and cluster-level implementation of climate change strategies.


2012 ◽  
Vol 12 (12) ◽  
pp. 5367-5390 ◽  
Author(s):  
J. Kelly ◽  
P. A. Makar ◽  
D. A. Plummer

Abstract. Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6) scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here. The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6 emissions for 2050 resulted in an improved air-quality, with decreases in key pollutant concentrations, in acute human mortality associated with air-pollution, and in sulphur and ozone deposition to the ecosystem. The positive outcomes of the RCP 6 emissions reductions were found to be of greater magnitude than the negative outcomes of climate change alone. The RCP 6 scenario however resulted in an increase in the deposition of nitrogen, as a result of increased ammonia emissions expected in that scenario, compared to current ammonia emissions levels. The results of the study raise the possibility that simultaneous reductions of greenhouse gases and air pollution precursors may further reduce air pollution levels, with the added benefits of an immediate reduction in the impacts of air pollution on human and ecosystem health. Further scenarios to investigate this possibility are therefore recommended.


Sign in / Sign up

Export Citation Format

Share Document