Basin Response to Active Extension and Strike-Slip Deformation in the Hinterland of the Tibetan Plateau

2012 ◽  
pp. 445-460 ◽  
Author(s):  
Michael H. Taylor ◽  
Paul A. Kapp ◽  
Brian K. Horton
Lithosphere ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 3-18
Author(s):  
Loraine Gourbet ◽  
Rong Yang ◽  
Maria Giuditta Fellin ◽  
Jean-Louis Paquette ◽  
Sean D. Willett ◽  
...  

Abstract We performed apatite and zircon (U-Th)/He dating on a granitic pluton that has been offset by ∼10 km by motion on the sinistral strike-slip Xiangcheng fault in SW Sichuan, SE Tibetan plateau, where the Shuoqu River incises a deep valley before joining the upper Yangtze River. Mean ZHe cooling ages range from 49.5 ± 2.2 Ma to 68.6 ± 6.0 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30.6 ± 1.4 Ma to 40.6 ± 2.7 Ma, whereas samples at lower elevations range from 9.8 ± 1.3 Ma to 14.6 ± 2.7 Ma. In the same region, Cenozoic continental sediments are exposed on the flanks of deep valleys. They consist of unsorted conglomerates and sandstones that partly fill a paleotopography. The sediments were deposited during an episode of rapid sedimentation, followed by incision that varies between 0.5 and 1.2 km. Thermal and exhumational modeling of the granite thermochronometric data indicates rapid cooling during the middle Miocene that was likely related to fluvial incision. Our findings suggest that the upper Yangtze River and its tributary (Shuoqu) were connected by the middle Miocene. Our modeling also supports the idea that the exhumation pattern during the Cenozoic in the southeastern margin of the Tibetan Plateau is spatially and temporally heterogeneous.


2021 ◽  
Vol 13 (16) ◽  
pp. 3109
Author(s):  
Peng Chen ◽  
Bing Yan ◽  
Yuan Liu

Systematic deflection of drainage systems along strike-slip faults is the combination of repeated faulting slipping and continuous headward erosion accumulated on the stream channels. The measurement and analysis of systematically deflected stream channels will enhance our understanding on the deformational behaviors of strike-slip faults and the relationship between topographic response and active strike-slip faulting. In this study, detailed interpretation and analysis of remote sensing images and DEM data were carried out along the Altyn Tagh Fault, one typical large-scale strike-slip fault in the northern Tibetan Plateau, and together with the statistical results of offset amounts of 153 stream channels, revealed that (i) the drainage systems have been systematically deflected and/or offset in sinistral along the active Altyn Tagh Fault; (ii) The offset amounts recorded by stream channels vary in the range of 7 m to 72 km, and indicate a positively related linear relationship between the upstream length L and the offset amount D, the channel with bedrock upstream generally has a better correlation between L and D than that of non-bedrock upstream; (iii) River capture and abandonment are commonly developed along the Altyn Tagh Fault, which probably disturbed the continuous accumulation of offset recorded on individual stream channel, suggesting that the real maximum cumulative displacement recorded by stream channels might be larger than 72 km (lower bound) along the Altyn Tagh Fault. Along with the cumulative displacements recorded by other regional-scale strike-slip faults in the Tibetan Plateau, these results demonstrate that the magnitude of tectonic extrusion along these first-order strike-slip faults after the collision of India–Asia plates might be limited.


2004 ◽  
Vol 62 (3) ◽  
pp. 310-315 ◽  
Author(s):  
Ke Zhang ◽  
Kaiyu Liu ◽  
Jinchun Yang

Offset fluvial valleys, including rivers beheaded and deflected by strike-slip faults, have long been used to estimate horizontal displacements on the faults. Larger rivers crossing such faults, however, sometimes show either no offset or only a small amount of offset compared to smaller rivers crossing the same faults. The larger rivers with higher erosional rates may widen their valleys asymmetrically downstream of strike-slip faults, rather than being beheaded or deflected. Examples are described from the Yellow River near the NE margin of the Tibetan Plateau. River beheading and asymmetrical widening are two end-members of a fluvial valley's response to strike-slip faulting, whereas deflection is a combination of both. Recognition of the formation of such asymmetrical valleys related to strike-slip faulting will help to understand fault activity better over longer time spans and enable a re-evaluation of many fault histories worldwide.


2016 ◽  
Vol 43 (1) ◽  
pp. 162-173 ◽  
Author(s):  
Duo Wang ◽  
Gong-Ming Yin ◽  
Xu-Long Wang ◽  
Chun-Ru Liu ◽  
Fei Han ◽  
...  

Abstract The Gyaring Co Fault (GCF) is an active right-lateral strike-slip fault in central Tibet that accommodates convergence between India and Asia in the interior of the Tibetan Plateau. The average long-term slip rate of the fault remains controversial, given the absence of absolute age data of faulted geomorphic features. We have applied optically stimulated luminescence (OSL) dating to the northern segment of the GCF, revealing that the GCF has displaced alluvial fans at Aerqingsang by 500 ± 100 m since their deposition at ~109 ka, yielding a slip rate of 4.6 ± 1.0 mm/yr. A slip rate of 3.4 ± 0.4 mm/yr is inferred from analysis of an alluvial fan with an offset of 65 ± 5 m (~19 ka) at Quba site 1. The Holocene slip rate is estimated to be 1.9 ± 0.3 mm/yr, as inferred from the basal age (~8.3 ka) of terrace T1 that has a gully displacement of 16 ± 2 m at Quba site 2. These slip rates are generally lower early estimates (10–20 mm/yr), but are consistent with more recent results (2.2–4.5 mm/yr) and GPS data for other strike-slip faults in this region, indicating that deformation may be distributed across the entire Tibetan Plateau. Moreover, we suggest that the slip rate along the GCF may have decreased slightly during the late Quaternary.


Sign in / Sign up

Export Citation Format

Share Document