sticking coefficient

Author(s):  
R. Imbihl
Keyword(s):  
Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 272
Author(s):  
Mehmet F. Cansizoglu ◽  
Mesut Yurukcu ◽  
Tansel Karabacak

Chemical removal of materials from the surface is a fundamental step in micro- and nano-fabrication processes. In conventional plasma etching, etchant molecules are non-directional and perform a uniform etching over the surface. However, using a highly directional obliquely incident beam of etching agent, it can be possible to engineer surfaces in the micro- or nano- scales. Surfaces can be patterned with periodic morphologies like ripples and mounds by controlling parameters including the incidence angle with the surface and sticking coefficient of etching particles. In this study, the dynamic evolution of a rippled morphology has been investigated during oblique angle etching (OAE) using Monte Carlo simulations. Fourier space and roughness analysis were performed on the resulting simulated surfaces. The ripple formation was observed to originate from re-emission and shadowing effects during OAE. Our results show that the ripple wavelength and root-mean-square roughness evolved at a more stable rate with accompanying quasi-periodic ripple formation at higher etching angles (θ > 60°) and at sticking coefficient values (Sc) 0.5 ≤ Sc ≤ 1. On the other hand, smaller etching angle (θ < 60°) and lower sticking coefficient values lead to a rapid formation of wider and deeper ripples. This result of this study can be helpful to develop new surface patterning techniques by etching.


1992 ◽  
Vol 280 ◽  
Author(s):  
J. F. Egler ◽  
N. Otsuka ◽  
K. Mahalingam

ABSTRACTGrowth kinetics on non-singular surfaces were studied by Monte Carlo simulations. In contrast to the growth on singular and vicinal surfaces, the sticking coefficient on the non-singular surfaces was found to decrease with increase of the surface roughness. Simulations of annealing processes showed that surface diffusion of atoms leads to a stationary surface roughness, which is explained by multiple configurations having the lowest energy in the non-singular surface.


1982 ◽  
Vol 122 (3) ◽  
pp. 447-458 ◽  
Author(s):  
J.L. Beeby ◽  
Bal K. Agrawal

1989 ◽  
Vol 149 ◽  
Author(s):  
S. Veprek ◽  
M. Heintze ◽  
R. Bayer ◽  
N. Jurčik-Rajman

ABSTRACTWe present new results of kinetic studies of the deposition of high quality a-Si:H which strongly support the reaction mechanism suggested in our earlier papers: 1. SiH4 → SiH2; 2. SiH2 + SiS4 → Si2H6 (SiH2 + Si2H6 → Si3H6); 3. Si2H6 → 2a-Si:H (Si3H8 → 3a-Si:H). The “SiH3 mechanism”, as promoted by several workers, is in contradiction with these experimental facts.The di- and trisilane, which have a much higher reactive sticking coefficient than monosilane, play the role of reactive intermediates which facilitate the heterogeneous decomposition of silicon carrying species at the surface of the growing film. The values of the reactive sticking coefficient of Si2H6 and Si3H8 depend on the surface coverage by chemisorbed hydrogen; they increase with decreasing surface coverage. Under the conditions of the growth of high quality a-Si:H films the reactive sticking coefficient of disilane amounts to 10−4 to 10−2 which is in a good agreement with recent data of other authors.The rate determining step of the growth of high quality a-Si:H films is the desorption of hydrogen from the surface of the growing film. This can be strongly enhanced by ion bombardment at impact energy of <100 eV. In this way, homogeneous, good quality films were deposited at rates up to 1800 Angströms/min, and there is a well justified hope that this rate can be further increased.


Sign in / Sign up

Export Citation Format

Share Document