scholarly journals Fast Synchrotron X-Ray Tomography of Dynamic Processes in Liquid Aluminium Alloy Foam

2016 ◽  
Vol 19 (11) ◽  
pp. 1600550 ◽  
Author(s):  
Paul Hans Kamm ◽  
Francisco García-Moreno ◽  
Tillmann Robert Neu ◽  
Korbinian Heim ◽  
Rajmund Mokso ◽  
...  
2018 ◽  
Vol 25 (6) ◽  
pp. 1790-1796 ◽  
Author(s):  
Catalina Jiménez ◽  
Marlen Paeplow ◽  
Paul H. Kamm ◽  
Tillmann R. Neu ◽  
Manuela Klaus ◽  
...  

High-speed X-ray imaging in two dimensions (radioscopy) and three dimensions (tomography) is combined with fast X-ray diffraction in a new experimental setup at the synchrotron radiation source BESSY II. It allows forin situstudies of time-dependent phenomena in complex systems. As a first application, the foaming process of an aluminium alloy was studied in three different experiments. Radioscopy, optical expansion measurements and diffraction were used to correlate the change of foam morphology to the various phases formed during heating of an AlMg15Cu10 alloy to 620°C in the first experiment. Radioscopy was then replaced by tomography. Acquiring tomograms and diffraction data at 2 Hz allows even more details of foam evolution to be captured, for example, bubble size distribution. In a third experiment, 4 Hz tomography yields dynamic insights into fast phenomena in evolving metal foam.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 925
Author(s):  
Diogo Heitor ◽  
Isabel Duarte ◽  
João Dias-de-Oliveira

X-ray microcomputed tomography has been gaining relevance in the field of cellular materials to characterize materials and analyse their microstructure. So, here, it was used together with finite element modelling to develop numerical models to estimate the effective properties (Young’s modulus) of aluminium alloy foams and evaluate the effects of processing on the results. A manual global thresholding technique using the mass as a quality indicator was used. The models were reconstructed (Marching Cubes 33), then simplified and analysed in terms of mass and shape maintenance (Hausdorff distance algorithm) and face quality. Two simplification procedures were evaluated, with and without small structural imperfections, to evaluate the impact of the procedures on the results. Results demonstrate that the developed procedures are good at minimizing changes in mass and shape of the geometries while providing good face quality, i.e., face aspect ratio. The models are also shown to be able to predict the effective properties of metallic foams in accordance with the findings of other researchers. In addition, the process of obtaining the models and the presence of small structural imperfections were shown to have a great impact on the results.


Author(s):  
Dagmar Ringe ◽  
Steven C. Almo ◽  
Gregory K. Farber ◽  
Janos Hajdu ◽  
P. Lynne Howell ◽  
...  

Author(s):  
Sarah Jane Marie Glanvill ◽  
Andrew Du Plessis ◽  
Steven Richard Street ◽  
Trevor Rayment ◽  
Alison J Davenport

2011 ◽  
Vol 399-401 ◽  
pp. 1838-1842
Author(s):  
You Bin Wang ◽  
Jian Min Zeng

The effects of Mn addition on the microstructure and hardness of 6061 aluminum alloy were studied by means of scanning electron microscope (SEM) , energy dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD) and hardness tester in this work. The results shows that rod and fishbone AlSiFeMn phase will be formed in the alloy with Mn addition in 6061 aluminium alloy, and the AlSiFeMn phase increases with the increasing of Mn content . By the mean of XRD, the Al4.07 Mn Si0.74 phase is found in the 6061 aluminium alloy from 0.7% to 1.5% Mn. The hardness increases with the increasing of Mn contents both for as-cast and for T6 heat treatment. However, the hardness growth rate for as-cast is much more than that for T6 heat treatment at the same Mn addition in the 6061 alloy. Mn has a little effect on the hardness for T6 heat treatment in 6061 alloy.


2018 ◽  
Vol 25 (07) ◽  
pp. 1950020
Author(s):  
A. VINOTH JEBARAJ ◽  
L. AJAYKUMAR ◽  
C. R. DEEPAK ◽  
K. V. V. ADITYA

The present work is an effort to study the influence of shot peening on the exfoliation corrosion behavior of aluminium alloy (AA) 5083. Surface textural changes induced by shot peening was characterized using microstructural and X-ray diffraction analysis. The surface roughness parameters were measured to study the benefits of peening induced surface topography. Further, the hardness survey was carried out to assess the severe plastic deformation on the peened layers. As a result, excellent resistance against exfoliation corrosion was achieved in the chloride environment. Shot peening plays major role in enhancing the corrosion resistance of AA 5083. In the absence of exfoliation attack, the unpeened sample surfaces such as ground, milled, and as received conditions end up with a significant pitting attack. The findings of this work will be useful for the aluminium alloy fabrications involved in the marine applications.


1994 ◽  
Vol 29 (14) ◽  
pp. 3653-3657 ◽  
Author(s):  
W. F. Heung ◽  
Y. P. Yang ◽  
M. Y. Zhou ◽  
P. C. Wong ◽  
K. A. R. Mitchell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document