The Importance of Electrical Impedance Spectroscopy and Equivalent Circuit Analysis on Nanoscale Molecular Electronic Devices

2021 ◽  
pp. 2109956
Author(s):  
Priyajit Jash ◽  
Ranjeev Kumar Parashar ◽  
Claudio Fontanesi ◽  
Prakash Chandra Mondal
1993 ◽  
Vol 74 (5) ◽  
pp. 2180-2187 ◽  
Author(s):  
D. C. Sasser ◽  
W. A. Gerth ◽  
Y. C. Wu

Osmotically induced cellular volume changes in the perfused rat hindlimb were used to validate the use of bioelectrical impedance spectroscopy as a method for observing fluid shifts between the intracellular and extracellular spaces. Electrical impedance spectra were measured as cell volumes were manipulated by perfusion with Krebs-Henseleit solutions having different concentrations of NaCl. A simple equivalent circuit model of current conduction through the monitored tissue was fit to each measured spectrum to obtain segmental values of the equivalent intracellular resistance, membrane capacitance, and extracellular resistance. These parameters are theoretically governed by variations in the average cell volume fraction and ionic concentrations in the intra- and extracellular fluid spaces. In accord with this theoretical dependence, the parameters changed systematically and reversibly in conformance with both the magnitudes and directions of the perfusate concentration changes and the resultant cell volume changes. Results indicate that bioelectrical impedance spectroscopy, coupled with computer-aided equivalent circuit analysis, can be used to monitor segmental intercompartmental fluid shifts at minute-by-minute resolution.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1496
Author(s):  
Huilu Bao ◽  
Jianping Li ◽  
Jianming Wen ◽  
Li Cheng ◽  
Yili Hu ◽  
...  

A quantitative and rapid burn injury detection method has been proposed based on the electrical impedance spectroscopy (EIS) of blood with a seven-parameter equivalent circuit. The degree of burn injury is estimated from the electrical impedance characteristics of blood with different volume proportions of red blood cells (RBCs) and heated red blood cells (HRBCs). A quantitative relationship between the volume portion HHCT of HRBCs and the electrical impedance characteristics of blood has been demonstrated. A seven -parameter equivalent circuit is employed to quantify the relationship from the perspective of electricity. Additionally, the traditional Hanai equation has been modified to verify the experimental results. Results show that the imaginary part of impedance ZImt under the characteristic frequency (fc) has a linear relationship with HHCT which could be described by ZImt = −2.56HHCT − 2.01 with a correlation coefficient of 0.96. Moreover, the relationship between the plasma resistance Rp and HHCT is obtained as Rp = −7.2HHCT + 3.91 with a correlation coefficient of 0.96 from the seven -parameter equivalent circuit. This study shows the feasibility of EIS in the quantitative detection of burn injury by the quantitative parameters ZImt and Rp, which might be meaningful for the follow-up clinical treatment for burn injury.


2007 ◽  
Vol 102 (2) ◽  
pp. 024504 ◽  
Author(s):  
Y. Y. Proskuryakov ◽  
K. Durose ◽  
B. M. Taele ◽  
S. Oelting

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kian Kadan-Jamal ◽  
Aakash Jog ◽  
Marios Sophocleous ◽  
Julius Georgiou ◽  
Adi Avni ◽  
...  

AbstractAn improved approach for comparative study of plant cells for long term and continuous monitoring using electrical impedance spectroscopy is demonstrated for tomato and tobacco plant cells (MSK8 and BY2) in suspensions. This approach is based on the locations and magnitudes of defining features in the impedance spectra of the recently reported unified equivalent circuit model. The ultra-wide range (4 Hz to 20 GHz) impedance spectra of the cell lines were measured using custom probes, and were analyzed using the unified equivalent circuit model, highlighting significant negative phase peaks in the ~ 1 kHz to ~ 10 MHz range. These peaks differ between the tomato and tobacco cells, and since they can be easily defined, they can potentially be used as the signal for differentiating between different cell cultures or monitoring them over time. These findings were further analysed, showing that ratios relating the resistances of the media and the resistance of the cells define the sensitivity of the method, thus affecting its selectivity. It was further shown that cell agglomeration is also an important factor in the impedance modeling in addition to the overall cell concentration. These results can be used for optimizing and calibrating electrical impedance spectroscopy-based sensors for long term monitoring of cell lines in suspension for a given specific cell and media types.


Sign in / Sign up

Export Citation Format

Share Document