scholarly journals Quantitative Evaluation of Burn Injuries Based on Electrical Impedance Spectroscopy of Blood with a Seven-Parameter Equivalent Circuit

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1496
Author(s):  
Huilu Bao ◽  
Jianping Li ◽  
Jianming Wen ◽  
Li Cheng ◽  
Yili Hu ◽  
...  

A quantitative and rapid burn injury detection method has been proposed based on the electrical impedance spectroscopy (EIS) of blood with a seven-parameter equivalent circuit. The degree of burn injury is estimated from the electrical impedance characteristics of blood with different volume proportions of red blood cells (RBCs) and heated red blood cells (HRBCs). A quantitative relationship between the volume portion HHCT of HRBCs and the electrical impedance characteristics of blood has been demonstrated. A seven -parameter equivalent circuit is employed to quantify the relationship from the perspective of electricity. Additionally, the traditional Hanai equation has been modified to verify the experimental results. Results show that the imaginary part of impedance ZImt under the characteristic frequency (fc) has a linear relationship with HHCT which could be described by ZImt = −2.56HHCT − 2.01 with a correlation coefficient of 0.96. Moreover, the relationship between the plasma resistance Rp and HHCT is obtained as Rp = −7.2HHCT + 3.91 with a correlation coefficient of 0.96 from the seven -parameter equivalent circuit. This study shows the feasibility of EIS in the quantitative detection of burn injury by the quantitative parameters ZImt and Rp, which might be meaningful for the follow-up clinical treatment for burn injury.

1993 ◽  
Vol 74 (5) ◽  
pp. 2180-2187 ◽  
Author(s):  
D. C. Sasser ◽  
W. A. Gerth ◽  
Y. C. Wu

Osmotically induced cellular volume changes in the perfused rat hindlimb were used to validate the use of bioelectrical impedance spectroscopy as a method for observing fluid shifts between the intracellular and extracellular spaces. Electrical impedance spectra were measured as cell volumes were manipulated by perfusion with Krebs-Henseleit solutions having different concentrations of NaCl. A simple equivalent circuit model of current conduction through the monitored tissue was fit to each measured spectrum to obtain segmental values of the equivalent intracellular resistance, membrane capacitance, and extracellular resistance. These parameters are theoretically governed by variations in the average cell volume fraction and ionic concentrations in the intra- and extracellular fluid spaces. In accord with this theoretical dependence, the parameters changed systematically and reversibly in conformance with both the magnitudes and directions of the perfusate concentration changes and the resultant cell volume changes. Results indicate that bioelectrical impedance spectroscopy, coupled with computer-aided equivalent circuit analysis, can be used to monitor segmental intercompartmental fluid shifts at minute-by-minute resolution.


2020 ◽  
Vol 12 (3) ◽  
pp. 566 ◽  
Author(s):  
Rinku Basak ◽  
Khan Wahid ◽  
Anh Dinh

In this work, crop leaf nitrogen concentration (LNC) is predicted by leaf impedance measurements made by electrical impedance spectroscopy (EIS). This method uses portable equipment and is noninvasive, as are other available nondestructive methods, such as hyperspectral imaging, near-infrared spectroscopy, and soil-plant analyses development (SPAD). An EVAL-AD5933EBZ evaluation board is used to measure the impedances of four different crop leaves, i.e., canola, wheat, soybeans, and corn, in the frequency range of 5 to 15 kHz. Multiple linear regression using the least square method is employed to obtain a correlation between leaf nitrogen concentrations and leaf impedances. A strong correlation is found between nitrogen concentrations and measured impedances for multiple features using EIS. The results are obtained by PrimaXL Data Analysis ToolPak and validated by analysis of variance (ANOVA) tests. Optimized regression models are determined by selecting features using the backward elimination method. After a comparative analysis among the four different crops, the best multiple regression results are found for canola with an overall correlation coefficient (R) of 0.99, a coefficient of determination (R2) of 0.98, and root mean square (RMSE) of 0.54% in the frequency range of 8.7–12 kHz. The performance of EIS is also compared with an available SPAD reading which is moderately correlated with LNC. A high correlation coefficient of 0.94, a coefficient of determination of 0.89, and RMSE of 1.12% are obtained using EIS, whereas a maximum correlation coefficient of 0.72, a coefficient of determination of 0.53, and RMSE of 1.52% are obtained using SPAD for the same number of combined observations. The proposed multiple linear regression models based on EIS measurements sensitive to LNC can be used on a very local scale to develop a simple, rapid, inexpensive, and effective instrument for determining the leaf nitrogen concentrations in crops.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kian Kadan-Jamal ◽  
Aakash Jog ◽  
Marios Sophocleous ◽  
Julius Georgiou ◽  
Adi Avni ◽  
...  

AbstractAn improved approach for comparative study of plant cells for long term and continuous monitoring using electrical impedance spectroscopy is demonstrated for tomato and tobacco plant cells (MSK8 and BY2) in suspensions. This approach is based on the locations and magnitudes of defining features in the impedance spectra of the recently reported unified equivalent circuit model. The ultra-wide range (4 Hz to 20 GHz) impedance spectra of the cell lines were measured using custom probes, and were analyzed using the unified equivalent circuit model, highlighting significant negative phase peaks in the ~ 1 kHz to ~ 10 MHz range. These peaks differ between the tomato and tobacco cells, and since they can be easily defined, they can potentially be used as the signal for differentiating between different cell cultures or monitoring them over time. These findings were further analysed, showing that ratios relating the resistances of the media and the resistance of the cells define the sensitivity of the method, thus affecting its selectivity. It was further shown that cell agglomeration is also an important factor in the impedance modeling in addition to the overall cell concentration. These results can be used for optimizing and calibrating electrical impedance spectroscopy-based sensors for long term monitoring of cell lines in suspension for a given specific cell and media types.


2021 ◽  
Vol 232 (2) ◽  
Author(s):  
Rakibul Islam Chowdhury ◽  
Rinku Basak ◽  
Khan Arif Wahid ◽  
Katy Nugent ◽  
Helen Baulch

Sign in / Sign up

Export Citation Format

Share Document