2D Materials: The Influence of Water on the Optical Properties of Single-Layer Molybdenum Disulfide (Adv. Mater. 17/2015)

2015 ◽  
Vol 27 (17) ◽  
pp. 2733-2733
Author(s):  
Joseph O. Varghese ◽  
Peter Agbo ◽  
Alexander M. Sutherland ◽  
Victor W. Brar ◽  
George R. Rossman ◽  
...  
2015 ◽  
Vol 27 (17) ◽  
pp. 2734-2740 ◽  
Author(s):  
Joseph O. Varghese ◽  
Peter Agbo ◽  
Alexander M. Sutherland ◽  
Victor W. Brar ◽  
George R. Rossman ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


Author(s):  
Yujun Hou ◽  
Chun Jiang

Since the growth of single layer of Si has emerged, silicene became a potential candidate material to make up the disadvantage of graphene. In this paper, the complex surface conductivity is applied to characterize the properties of silicene and we investigate the optical characterization of silicene-dielectric interfaces from IR to far UV range. The silicene-Si and silicene-Ge interfaces along both parallel and perpendicular polarization directions of electromagnetic field with normal incidence are considered in this work. The optical properties of the silicene-dielectric systems proposed in this paper lay a foundation for the performance of complex silicene-based optoelectronic devices such as sensors, detectors, filters, UV absorbers and so on.


Author(s):  
Kai Ren ◽  
Huabing Shu ◽  
Wenyi Huo ◽  
Zhen Cui ◽  
Jin Yu ◽  
...  

Two-dimensional (2D) materials with moderate bandgap and high carrier mobility are decent for the applications in the optoelectronics. In this work, we present a systematically investigation of the mechanical, electronic...


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Hongyan Yang ◽  
Yunzheng Wang ◽  
Zian Cheak Tiu ◽  
Sin Jin Tan ◽  
Libo Yuan ◽  
...  

In the advancement of photonics technologies, all-optical systems are highly demanded in ultrafast photonics, signal processing, optical sensing and optical communication systems. All-optical devices are the core elements to realize the next generation of photonics integration system and optical interconnection. Thus, the exploration of new optoelectronics materials that exhibit different optical properties is a highlighted research direction. The emerging two-dimensional (2D) materials such as graphene, black phosphorus (BP), transition metal dichalcogenides (TMDs) and MXene have proved great potential in the evolution of photonics technologies. The optical properties of 2D materials comprising the energy bandgap, third-order nonlinearity, nonlinear absorption and thermo-optics coefficient can be tailored for different optical applications. Over the past decade, the explorations of 2D materials in photonics applications have extended to all-optical modulators, all-optical switches, an all-optical wavelength converter, covering the visible, near-infrared and Terahertz wavelength range. Herein, we review different types of 2D materials, their fabrication processes and optical properties. In addition, we also summarize the recent advances of all-optical modulation based on 2D materials. Finally, we conclude on the perspectives on and challenges of the future development of the 2D material-based all-optical devices.


Nanoscale ◽  
2021 ◽  
Author(s):  
Guang Yang ◽  
Shang-Peng Gao

A highly feasible method to restore the intrinsic optical properties of 2D materials in supercell calculations was formulated and applied.


Sign in / Sign up

Export Citation Format

Share Document