2D Materials: Molybdenum Disulfide for Electronic and Optoelectronic Devices

Author(s):  
Shanee Pacley
2019 ◽  
Author(s):  
Andres Castellanos-Gomez ◽  
Patricia Gant ◽  
Riccardo Frisenda

Author(s):  
Sudesh Yadav ◽  
Satya Ranjan Jena ◽  
Bhavya M.B. ◽  
Ali Altaee ◽  
Manav Saxena ◽  
...  

2021 ◽  
Vol 7 (7) ◽  
pp. 2100444
Author(s):  
Jianye Fu ◽  
Meng Qiu ◽  
Wenzhong Bao ◽  
Han Zhang

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Jiang ◽  
Tao Xu ◽  
Junpeng Lu ◽  
Litao Sun ◽  
Zhenhua Ni

Two-dimensional (2D) materials have attracted increasing interests in the last decade. The ultrathin feature of 2D materials makes them promising building blocks for next-generation electronic and optoelectronic devices. With reducing dimensionality from 3D to 2D, the inevitable defects will play more important roles in determining the properties of materials. In order to maximize the functionality of 2D materials, deep understanding and precise manipulation of the defects are indispensable. In the recent years, increasing research efforts have been made on the observation, understanding, manipulation, and control of defects in 2D materials. Here, we summarize the recent research progress of defect engineering on 2D materials. The defect engineering triggered by electron beam (e-beam), plasma, chemical treatment, and so forth is comprehensively reviewed. Firstly, e-beam irradiation-induced defect evolution, structural transformation, and novel structure fabrication are introduced. With the assistance of a high-resolution electron microscope, the dynamics of defect engineering can be visualized in situ. Subsequently, defect engineering employed to improve the performance of 2D devices by means of other methods of plasma, chemical, and ozone treatments is reviewed. At last, the challenges and opportunities of defect engineering on promoting the development of 2D materials are discussed. Through this review, we aim to build a correlation between defects and properties of 2D materials to support the design and optimization of high-performance electronic and optoelectronic devices.


Nanoscale ◽  
2020 ◽  
Vol 12 (36) ◽  
pp. 18931-18937
Author(s):  
Wenhan Zhou ◽  
Shengli Zhang ◽  
Shiying Guo ◽  
Hengze Qu ◽  
Bo Cai ◽  
...  

2D materials with direct bandgaps and high carrier mobility are considered excellent candidates for next-generation electronic and optoelectronic devices.


Nanoscale ◽  
2020 ◽  
Vol 12 (22) ◽  
pp. 11784-11807 ◽  
Author(s):  
Changyong Lan ◽  
Zhe Shi ◽  
Rui Cao ◽  
Chun Li ◽  
Han Zhang

A study of typical 2D materials beyond graphene suitable for infrared applications, in particular, infrared light emitting devices, optical modulators, and photodetectors.


2013 ◽  
Vol 29 (04) ◽  
pp. 667-677 ◽  
Author(s):  
TANG Peng ◽  
◽  
XIAO Jian-Jian ◽  
ZHENG Chao ◽  
WANG Shi ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Francesco Tumino ◽  
Carlo S. Casari ◽  
Matteo Passoni ◽  
Valeria Russo ◽  
Andrea Li Bassi

Molybdenum disulphide (MoS2) is a promising material for heterogeneous catalysis and novel 2D optoelectronic devices. In this work, single-layer MoS2 is synthesized on Au(111) by pulsed laser deposition, showing the potentialities of this technique in the synthesis of high-quality 2D materials films.


Author(s):  
Hongcheng Ruan ◽  
Yu Huang ◽  
Yuqian Chen ◽  
Fuwei Zhuge

Two-dimensional (2D) materials are attracting explosive attention for their intriguing potential in versatile applications, covering optoelectronics, electronics, sensors, etc. An attractive merit of 2D materials is their viable van der Waals (VdW) stacking in artificial sequence, thus forming different atomic arrangements in vertical direction and enabling unprecedented tailoring of material properties and device application. In this chapter, we summarize the latest progress in assembling VdW heterostructures for optoelectronic applications by beginning with the basic pick-transfer method for assembling 2D materials and then discussing the different combination of 2D materials of semiconductor, conductor, and insulator properties for various optoelectronic devices, e.g., photodiode, phototransistors, optical memories, etc.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 711 ◽  
Author(s):  
Foad Ghasemi ◽  
Riccardo Frisenda ◽  
Eduardo Flores ◽  
Nikos Papadopoulos ◽  
Robert Biele ◽  
...  

In two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In particular, we demonstrate the controlled oxidation of titanium trisulfide (TiS3), a layered semicon-ductor that has attracted much attention recently thanks to its quasi-1D electronic and optoelectron-ic properties and its direct bandgap of 1.1 eV. Heating TiS3 in air above 300 °C gradually converts it into TiO2, a semiconductor with a wide bandgap of 3.2 eV with applications in photo-electrochemistry and catalysis. In this work, we investigate the controlled thermal oxidation of indi-vidual TiS3 nanoribbons and its influence on the optoelectronic properties of TiS3-based photodetec-tors. We observe a step-wise change in the cut-off wavelength from its pristine value ~1000 nm to 450 nm after subjecting the TiS3 devices to subsequent thermal treatment cycles. Ab-initio and many-body calculations confirm an increase in the bandgap of titanium oxysulfide (TiO2-xSx) when in-creasing the amount of oxygen and reducing the amount of sulfur.


Sign in / Sign up

Export Citation Format

Share Document