scholarly journals Multifunctional Tactile Sensors: A Highly Sensitive Tactile Sensor Using a Pyramid-Plug Structure for Detecting Pressure, Shear Force, and Torsion (Adv. Mater. Technol. 3/2019)

2019 ◽  
Vol 4 (3) ◽  
pp. 1970019
Author(s):  
Daehwan Choi ◽  
Sukjin Jang ◽  
Joo Sung Kim ◽  
Hyung-Jun Kim ◽  
Do Hwan Kim ◽  
...  
Author(s):  
Sung Joon Kim ◽  
Ja Choon Koo

For dexterous grasping and manipulation, tactile sensors recognizing contact object are essential. Electronic skin (E-skin) with tactile sensors plays a role as both receiving information for grasping and protecting robot frame. This paper presents a polymer tactile sensor covering large area to fulfill role of E-skin. The sensor has a thin air gap between polymer layers and it is deformed reacting slip input. When slip is occurred, there is relative displacement between surrounding layer and it incurs change of electrode separation. NBR is used to sensor substrate because of its tough and flexible characteristic. Ultrathin aluminum tape is employed for electrodes. There is a changeability of size of the sensor because of its simple but effective working principle and structure. Slip detecting algorithm doesn’t have a post process such as FFT or DWT, so there isn’t delay for processing time. It realizes real-time slip detection reducing reaction time of robot hand.


2018 ◽  
Vol 4 (3) ◽  
pp. 1800284 ◽  
Author(s):  
Daehwan Choi ◽  
Sukjin Jang ◽  
Joo Sung Kim ◽  
Hyung-Jun Kim ◽  
Do Hwan Kim ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 779 ◽  
Author(s):  
Xuguang Sun ◽  
Jianhai Sun ◽  
Shuaikang Zheng ◽  
Chunkai Wang ◽  
Wenshuo Tan ◽  
...  

A tactile sensor is an indispensable component for electronic skin, mimicking the sensing function of organism skin. Various sensing materials and microstructures have been adopted in the fabrication of tactile sensors. Herein, we propose a highly sensitive flexible tactile sensor composed of nanocomposites with pyramid and irregularly rough microstructures and implement a comparison of piezoresistive properties of nanocomposites with varying weight proportions of multi-wall nanotubes and carbon black particles. In addition to the simple and low-cost fabrication method, the tactile sensor can reach high sensitivity of 3.2 kPa−1 in the range of <1 kPa and fast dynamic response of 217 ms (loading) and 81 ms (recovery) at 40 kPa pressure. Moreover, body movement monitoring applications have been carried out utilizing the flexible tactile sensor. A sound monitoring application further indicates the potential for applications in electronic skin, human–computer interaction, and physiological detection.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1572
Author(s):  
Lukas Merker ◽  
Joachim Steigenberger ◽  
Rafael Marangoni ◽  
Carsten Behn

Just as the sense of touch complements vision in various species, several robots could benefit from advanced tactile sensors, in particular when operating under poor visibility. A prominent tactile sense organ, frequently serving as a natural paragon for developing tactile sensors, is the vibrissae of, e.g., rats. Within this study, we present a vibrissa-inspired sensor concept for 3D object scanning and reconstruction to be exemplarily used in mobile robots. The setup consists of a highly flexible rod attached to a 3D force-torque transducer (measuring device). The scanning process is realized by translationally shifting the base of the rod relative to the object. Consequently, the rod sweeps over the object’s surface, undergoing large bending deflections. Then, the support reactions at the base of the rod are evaluated for contact localization. Presenting a method of theoretically generating these support reactions, we provide an important basis for future parameter studies. During scanning, lateral slip of the rod is not actively prevented, in contrast to literature. In this way, we demonstrate the suitability of the sensor for passively dragging it on a mobile robot. Experimental scanning sweeps using an artificial vibrissa (steel wire) of length 50 mm and a glass sphere as a test object with a diameter of 60 mm verify the theoretical results and serve as a proof of concept.


2021 ◽  
Vol 6 (51) ◽  
pp. eabc8801
Author(s):  
Youcan Yan ◽  
Zhe Hu ◽  
Zhengbao Yang ◽  
Wenzhen Yuan ◽  
Chaoyang Song ◽  
...  

Human skin can sense subtle changes of both normal and shear forces (i.e., self-decoupled) and perceive stimuli with finer resolution than the average spacing between mechanoreceptors (i.e., super-resolved). By contrast, existing tactile sensors for robotic applications are inferior, lacking accurate force decoupling and proper spatial resolution at the same time. Here, we present a soft tactile sensor with self-decoupling and super-resolution abilities by designing a sinusoidally magnetized flexible film (with the thickness ~0.5 millimeters), whose deformation can be detected by a Hall sensor according to the change of magnetic flux densities under external forces. The sensor can accurately measure the normal force and the shear force (demonstrated in one dimension) with a single unit and achieve a 60-fold super-resolved accuracy enhanced by deep learning. By mounting our sensor at the fingertip of a robotic gripper, we show that robots can accomplish challenging tasks such as stably grasping fragile objects under external disturbance and threading a needle via teleoperation. This research provides new insight into tactile sensor design and could be beneficial to various applications in robotics field, such as adaptive grasping, dexterous manipulation, and human-robot interaction.


2011 ◽  
Vol 08 (03) ◽  
pp. 181-195
Author(s):  
ZHAOXIAN XIE ◽  
HISASHI YAMAGUCHI ◽  
MASAHITO TSUKANO ◽  
AIGUO MING ◽  
MAKOTO SHIMOJO

As one of the home services by a mobile manipulator system, we are aiming at the realization of the stand-up motion support for elderly people. This work is charaterized by the use of real-time feedback control based on the information from high speed tactile sensors for detecting the contact force as well as its center of pressure between the assisted human and the robot arm. First, this paper introduces the design of the tactile sensor as well as initial experimental results to show the feasibility of the proposed system. Moreover, several fundamental tactile sensing-based motion controllers necessary for the stand-up motion support and their experimental verification are presented. Finally, an assist trajectory generation method for the stand-up motion support by integrating fuzzy logic with tactile sensing is proposed and demonstrated experimentally.


Author(s):  
S. Unsal ◽  
A. Shirkhodaie ◽  
A. H. Soni

Abstract Adding sensing capability to a robot provides the robot with intelligent perception capability and flexibility of decision making. To perform intelligent tasks, robots are highly required to perceive their operating environment, and react accordingly. With this regard, tactile sensors offer to extend the scope of intelligence of a robot for performing tasks which require object touching, recognition, and manipulation. This paper presents the design of an inexpensive pneumatic binary-array tactile sensor for such robotic applications. The paper describes some of the techniques implemented for object recognition from binary sensory information. Furthermore, it details the development of software and hardware which facilitate the sensor to provide useful information to a robot so that the robot perceives its operating environment during manipulation of objects.


2022 ◽  
Vol 23 ◽  
pp. 100718
Author(s):  
J. Chen ◽  
L. Li ◽  
Z. Zhu ◽  
Z. Luo ◽  
W. Tang ◽  
...  

2018 ◽  
Vol 15 (4) ◽  
pp. 172988141878363 ◽  
Author(s):  
Utku Büyükşahin ◽  
Ahmet Kırlı

Tactile sensors are commonly a coordinated group of receptors forming a matrix array meant to measure force or pressure similar to the human skin. Optic-based tactile sensors are flexible, sensitive, and fast; however, the human fingertip’s spatial resolution, which can be regarded as the desired spatial resolution, still could not be reached because of their bulky nature. This article proposes a novel and patented optic-based tactile sensor design, in which fiber optic cables are used to increase the number of sensory receptors per square centimeter. The proposed human-like high-resolution tactile sensor design is based on simple optics and image processing techniques, and it enables high spatial resolution and easy data acquisition at low cost. This design proposes using the change in the intesity of the light occured due to the deformation on contact/measurement surface. The main idea is using fiber optic cables as the afferents of the human physiology which can have 9 µm diameters for both delivering and receiving light beams. The variation of the light intensity enters sequent mathematical models as the input, then, the displacement, the force, and the pressure data are evaluated as the outputs. A prototype tactile sensor is manufactured with 1-mm spatial and 0.61-kPa pressure measurement resolution with 0–15.6 N/cm2 at 30 Hz sampling frequency. Experimental studies with different scenarios are conducted to demonstrate how this state-of-the-art design worked and to evaluate its performance. The overall accuracy of the first prototype, based on different scenarios, is calculated as 93%. This performance is regarded as promising for further developments and applications such as grasp control or haptics.


Sign in / Sign up

Export Citation Format

Share Document