Nonparametric Object Recognition With a New Tactile Sensor

Author(s):  
S. Unsal ◽  
A. Shirkhodaie ◽  
A. H. Soni

Abstract Adding sensing capability to a robot provides the robot with intelligent perception capability and flexibility of decision making. To perform intelligent tasks, robots are highly required to perceive their operating environment, and react accordingly. With this regard, tactile sensors offer to extend the scope of intelligence of a robot for performing tasks which require object touching, recognition, and manipulation. This paper presents the design of an inexpensive pneumatic binary-array tactile sensor for such robotic applications. The paper describes some of the techniques implemented for object recognition from binary sensory information. Furthermore, it details the development of software and hardware which facilitate the sensor to provide useful information to a robot so that the robot perceives its operating environment during manipulation of objects.

2010 ◽  
Vol 166-167 ◽  
pp. 277-284 ◽  
Author(s):  
Nicolae Marian ◽  
Alin Drimus ◽  
Arne Bilberg

Flexible grasping robots are needed for enabling automated, profitable and competitive production of small batch sizes including complex handling processes of often fragile objects. This development will create new conditions for value-adding activities in the production of the future world. The paper describes the related research work we have developed for sensor design, exploration and control for a robot gripping system, in order to analyze normal forces applied on the tactile pixels for gripping force control and generate tactile images for gripping positioning and object recognition. Section 1 gives an introduction of principles and technologies in tactile sensing for robot grippers. Section 2 presents the sensor cell (taxel) and array design and characterization. Section 3 introduces object recognition and shape analysis ideas showing a few preliminary examples, where geometrical features of small objects are identified. Slip detection in order to define optimum grasp pressure is addressed in section 4. The paper will conclude by addressing future ideas about how to judge or forecast a good grasp quality from sensory information.


2020 ◽  
Vol 5 (49) ◽  
pp. eabc8134
Author(s):  
Guozhen Li ◽  
Shiqiang Liu ◽  
Liangqi Wang ◽  
Rong Zhu

Robot hands with tactile perception can improve the safety of object manipulation and also improve the accuracy of object identification. Here, we report the integration of quadruple tactile sensors onto a robot hand to enable precise object recognition through grasping. Our quadruple tactile sensor consists of a skin-inspired multilayer microstructure. It works as thermoreceptor with the ability to perceive thermal conductivity of a material, measure contact pressure, as well as sense object temperature and environment temperature simultaneously and independently. By combining tactile sensing information and machine learning, our smart hand has the capability to precisely recognize different shapes, sizes, and materials in a diverse set of objects. We further apply our smart hand to the task of garbage sorting and demonstrate a classification accuracy of 94% in recognizing seven types of garbage.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 966 ◽  
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This paper presents the design and calibration of a new force/tactile sensor for robotic applications. The sensor is suitably designed to provide the robotic grasping device with a sensory system mimicking the human sense of touch, namely, a device sensitive to contact forces, object slip and object geometry. This type of perception information is of paramount importance not only in dexterous manipulation but even in simple grasping tasks, especially when objects are fragile, such that only a minimum amount of grasping force can be applied to hold the object without damaging it. Moreover, sensing only forces and not moments can be very limiting to securely grasp an object when it is grasped far from its center of gravity. Therefore, the perception of torsional moments is a key requirement of the designed sensor. Furthermore, the sensor is also the mechanical interface between the gripper and the manipulated object, therefore its design should consider also the requirements for a correct holding of the object. The most relevant of such requirements is the necessity to hold a torsional moment, therefore a soft distributed contact is necessary. The presence of a soft contact poses a number of challenges in the calibration of the sensor, and that is another contribution of this work. Experimental validation is provided in real grasping tasks with two sensors mounted on an industrial gripper.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1572
Author(s):  
Lukas Merker ◽  
Joachim Steigenberger ◽  
Rafael Marangoni ◽  
Carsten Behn

Just as the sense of touch complements vision in various species, several robots could benefit from advanced tactile sensors, in particular when operating under poor visibility. A prominent tactile sense organ, frequently serving as a natural paragon for developing tactile sensors, is the vibrissae of, e.g., rats. Within this study, we present a vibrissa-inspired sensor concept for 3D object scanning and reconstruction to be exemplarily used in mobile robots. The setup consists of a highly flexible rod attached to a 3D force-torque transducer (measuring device). The scanning process is realized by translationally shifting the base of the rod relative to the object. Consequently, the rod sweeps over the object’s surface, undergoing large bending deflections. Then, the support reactions at the base of the rod are evaluated for contact localization. Presenting a method of theoretically generating these support reactions, we provide an important basis for future parameter studies. During scanning, lateral slip of the rod is not actively prevented, in contrast to literature. In this way, we demonstrate the suitability of the sensor for passively dragging it on a mobile robot. Experimental scanning sweeps using an artificial vibrissa (steel wire) of length 50 mm and a glass sphere as a test object with a diameter of 60 mm verify the theoretical results and serve as a proof of concept.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel Eriksson ◽  
Camilla Persson ◽  
Henry Eriksson ◽  
Tore Käck ◽  
Christer Korin

Abstract The importance of sensory information in product purchasing decisions has gained increasing attention in recent years. Tactile properties of packaging are usually measured with the help of trained evaluators. An objective, fast and repeatable method that describes the mechanical interaction and does not rely on a panel would have many benefits. We propose and evaluate such a method for measuring the mechanical interaction between a deformable finger-like shaped sensor and a package. Evaluation of the method shows good repeatability, the variability in the measurement result is within a few percent in most cases. The method captures indentation differences at contact between sensor and package due to measurement position and package design.


2021 ◽  
Vol 6 (51) ◽  
pp. eabc8801
Author(s):  
Youcan Yan ◽  
Zhe Hu ◽  
Zhengbao Yang ◽  
Wenzhen Yuan ◽  
Chaoyang Song ◽  
...  

Human skin can sense subtle changes of both normal and shear forces (i.e., self-decoupled) and perceive stimuli with finer resolution than the average spacing between mechanoreceptors (i.e., super-resolved). By contrast, existing tactile sensors for robotic applications are inferior, lacking accurate force decoupling and proper spatial resolution at the same time. Here, we present a soft tactile sensor with self-decoupling and super-resolution abilities by designing a sinusoidally magnetized flexible film (with the thickness ~0.5 millimeters), whose deformation can be detected by a Hall sensor according to the change of magnetic flux densities under external forces. The sensor can accurately measure the normal force and the shear force (demonstrated in one dimension) with a single unit and achieve a 60-fold super-resolved accuracy enhanced by deep learning. By mounting our sensor at the fingertip of a robotic gripper, we show that robots can accomplish challenging tasks such as stably grasping fragile objects under external disturbance and threading a needle via teleoperation. This research provides new insight into tactile sensor design and could be beneficial to various applications in robotics field, such as adaptive grasping, dexterous manipulation, and human-robot interaction.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 056622 ◽  
Author(s):  
Wendong Zheng ◽  
Bowen Wang ◽  
Huaping Liu ◽  
Yunkai Li ◽  
Ran Zhao ◽  
...  

2011 ◽  
Vol 08 (03) ◽  
pp. 181-195
Author(s):  
ZHAOXIAN XIE ◽  
HISASHI YAMAGUCHI ◽  
MASAHITO TSUKANO ◽  
AIGUO MING ◽  
MAKOTO SHIMOJO

As one of the home services by a mobile manipulator system, we are aiming at the realization of the stand-up motion support for elderly people. This work is charaterized by the use of real-time feedback control based on the information from high speed tactile sensors for detecting the contact force as well as its center of pressure between the assisted human and the robot arm. First, this paper introduces the design of the tactile sensor as well as initial experimental results to show the feasibility of the proposed system. Moreover, several fundamental tactile sensing-based motion controllers necessary for the stand-up motion support and their experimental verification are presented. Finally, an assist trajectory generation method for the stand-up motion support by integrating fuzzy logic with tactile sensing is proposed and demonstrated experimentally.


2012 ◽  
Vol 175 ◽  
pp. 60-72 ◽  
Author(s):  
G. De Maria ◽  
C. Natale ◽  
S. Pirozzi

Sign in / Sign up

Export Citation Format

Share Document