scholarly journals 2D-Materials-Based Quantum Dots: Gateway Towards Next-Generation Optical Devices

2017 ◽  
Vol 5 (19) ◽  
pp. 1700257 ◽  
Author(s):  
Sathish C. Dhanabalan ◽  
Balaji Dhanabalan ◽  
Joice S. Ponraj ◽  
Qiaoliang Bao ◽  
Han Zhang
2020 ◽  
Author(s):  
Haoyang Yu ◽  
Alyxandra Thiessen ◽  
Md Asjad Hossain ◽  
Marc Julian Kloberg ◽  
Bernhard Rieger ◽  
...  

<div><div><div><p>Covalently bonded organic monolayers play important roles in defining the solution processability, ambient stability, and electronic properties of two-dimensional (2D) materials such as Ge nanosheets (GeNSs); they also hold promise of providing avenues for the fabrication of future generation electronic and optical devices. Functionalization of GeNS normally involves surface moieties linked through covalent Ge−C bonds. In the present contribution we extend the scope of surface linkages to include Si−Ge bonding and present the first demonstration of heteronuclear dehydrocoupling of organosilanes to hydride-terminated GeNSs obtained from the deintercalation and exfoliation of CaGe2. We further exploit this new surface reactivity and demonstrated the preparation of directly bonded silicon quantum dot-Ge nanosheet hybrids.</p></div></div></div>


2019 ◽  
Vol 20 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Sounik Manna ◽  
Munmun Ghosh ◽  
Ranadhir Chakraborty ◽  
Sudipto Ghosh ◽  
Santi M. Mandal

Succumbing to Multi-Drug Resistant (MDR) bacteria is a great distress to the recent health care system. Out of the several attempts that have been made to kill MDR pathogens, a few gained short-lived success. The failures, of the discovered or innovated antimicrobials, were mostly due to their high level of toxicity to hosts and the phenomenal rate of developing resistance by the pathogens against the new arsenal. Recently, a few quantum dots were tested against the pathogenic bacteria and therefore, justified for potential stockpiling of next-generation antibacterial agents. The key players for antimicrobial properties of quantum dots are considered to be Reactive Oxygen Species (ROS). The mechanism of reaction between bacteria and quantum dots needs to be better understood. They are generally targeted towards the cell wall and membrane components as lipoteichoic acid and phosphatidyl glycerol of bacteria have been documented here. In this paper, we have attempted to simulate ZnS quantum dots and have analysed their mechanism of reaction as well as binding potential to the above bacterial membrane components using CDOCKER. Results have shown a high level of antibacterial activity towards several pathogenic bacteria which specify their potentiality for future generation antibacterial drug development.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 687
Author(s):  
Shuolei Meng ◽  
Qianyuan Chen ◽  
Hongjian Lin ◽  
Feng Zhou ◽  
Youning Gong ◽  
...  

A simple and effective approach based on the liquid phase exfoliation (LPE) method has been put forward for synthesizing boron quantum dots (BQDs). By adjusting the interactions between bulk boron and various solvents, the average diameter of produced BQDs is about 7 nm. The nonlinear absorption (NLA) responses of as-prepared BQDs have been systematically studied at 515 nm and 1030 nm. Experimental results prove that BQDs possess broadband saturable absorption (SA) and good third-order nonlinear optical susceptibility, which are comparable to graphene. The fast relaxation time and slow relaxation time of BQDs at 515 nm and 1030 nm are about 0.394–5.34 ps and 4.45–115 ps, respectively. The significant ultrafast nonlinear optical properties can be used in optical devices. Here, we successfully demonstrate all-optical diode application based on BQDs/ReS2 tandem structure. The findings are essential for understanding the nonlinear optical properties in BQDs and open a new pathway for their applications in optical devices.


Author(s):  
Sudesh Yadav ◽  
Satya Ranjan Jena ◽  
Bhavya M.B. ◽  
Ali Altaee ◽  
Manav Saxena ◽  
...  

Carbon ◽  
2021 ◽  
Author(s):  
Jun Gong ◽  
Zheye Zhang ◽  
Zhiping Zeng ◽  
Wenjun Wang ◽  
Lingxuan Kong ◽  
...  

2009 ◽  
Vol 48 (6) ◽  
pp. 065502 ◽  
Author(s):  
Nobuhiko Ozaki ◽  
Shunsuke Ohkouchi ◽  
Yoshiaki Takata ◽  
Naoki Ikeda ◽  
Yoshinori Watanabe ◽  
...  

Author(s):  
Ting Yuan ◽  
Ting Meng ◽  
Yuxin Shi ◽  
Xianzhi Song ◽  
Wenjing Xie ◽  
...  

Featuring a combination of size-tunable emission wavelengths, high thermal stability, and low cytotoxicity, carbon quantum dots (CQDs) have opened up a new possibility for next-generation displays.


Sign in / Sign up

Export Citation Format

Share Document