scholarly journals Low‐Power Computing: Vertical‐Tunneling Field‐Effect Transistor Based on WSe 2 ‐MoS 2 Heterostructure with Ion Gel Dielectric (Adv. Electron. Mater. 7/2020)

2020 ◽  
Vol 6 (7) ◽  
pp. 2070030
Author(s):  
Hyun Bae Jeon ◽  
Gwang Hyuk Shin ◽  
Khang June Lee ◽  
Sung‐Yool Choi

D flip-flop is viewed as the most basic memory cell in by far most of computerized circuits, which brings it broad usage, particularly under current conditions where high-thickness pipeline innovation is as often as possible utilized in advanced coordinated circuits and flip-flop modules are key segments. As a constant research center, various sorts of zero flip-flops have been concocted and explored, and the ongoing exploration pattern has gone to rapid low-control execution, which can be come down to low power-defer item. To actualize superior VLSI, picking the most proper D flip-flop has clearly become an incredibly huge part in the structure stream. The quick headway in semiconductor innovation made it practicable to coordinate entire electronic framework on a solitary chip. CMOS innovation is the most doable semiconductor innovation yet it neglects to proceed according to desires past and at 32nm innovation hub because of the short channel impacts. GNRFET is Graphene Nano Ribbon Field Effect Transistor, it is seen that GNRFET is a promising substitute for low force application for its better grasp over the channel. In this paper, an audit on Dynamic Flip Flop and GNRFET is introduced. The power is improved in the proposed circuit for the D flip flop TSPC.


RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22803-22807 ◽  
Author(s):  
Pranav Kumar Asthana ◽  
Bahniman Ghosh ◽  
Shiromani Bal Mukund Rahi ◽  
Yogesh Goswami

In this paper we have proposed an optimal design for a hetero-junctionless tunnel field effect transistor using HfO2 as a gate dielectric.


Sign in / Sign up

Export Citation Format

Share Document