Biomass allocation of Vincetoxicum rossicum and V. nigrum in contrasting competitive environments

2021 ◽  
Author(s):  
Antonio DiTommaso ◽  
Kristine M. Averill ◽  
Zhong Qin ◽  
Melanie Ho ◽  
Anna S. Westbrook ◽  
...  
Author(s):  
Dawn Langan Teele

In the 1880s, women were barred from voting in all national-level elections, but by 1920 they were going to the polls in nearly thirty countries. What caused this massive change? Contrary to conventional wisdom, it was not because of progressive ideas about women or suffragists' pluck. In most countries, elected politicians fiercely resisted enfranchising women, preferring to extend such rights only when it seemed electorally prudent and necessary to do so. This book demonstrates that the formation of a broad movement across social divides, and strategic alliances with political parties in competitive electoral conditions, provided the leverage that ultimately transformed women into voters. As the book shows, in competitive environments, politicians had incentives to seek out new sources of electoral influence. A broad-based suffrage movement could reinforce those incentives by providing information about women's preferences, and an infrastructure with which to mobilize future female voters. At the same time that politicians wanted to enfranchise women who were likely to support their party, suffragists also wanted to enfranchise women whose political preferences were similar to theirs. In contexts where political rifts were too deep, suffragists who were in favor of the vote in principle mobilized against their own political emancipation. Exploring tensions between elected leaders and suffragists and the uncertainty surrounding women as an electoral group, the book sheds new light on the strategic reasons behind women's enfranchisement.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Shengwang Meng ◽  
Fan Yang ◽  
Sheng Hu ◽  
Haibin Wang ◽  
Huimin Wang

Current models for oak species could not accurately estimate biomass in northeastern China, since they are usually restricted to Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) on local sites, and specifically, no biomass models are available for Liaodong oak (Quercuswutaishanica Mayr). The goal of this study was, therefore, to develop generic biomass models for both oak species on a large scale and evaluate the biomass allocation patterns within tree components. A total of 159 sample trees consisting of 120 Mongolian oak and 39 Liaodong oak were harvested and measured for wood (inside bark), bark, branch and foliage biomass. To account for the belowground biomass, 53 root systems were excavated following the aboveground harvest. The share of biomass allocated to different components was assessed by calculating the ratios. An aboveground additive system of biomass models and belowground equations were fitted based on predictors considering diameter (D), tree height (H), crown width (CW) and crown length (CL). Model parameters were estimated by jointly fitting the total and the components’ equations using the weighted nonlinear seemingly unrelated regression method. A leave-one-out cross-validation procedure was used to evaluate the predictive ability. The results revealed that stem biomass accounts for about two-thirds of the aboveground biomass. The ratio of wood biomass holds constant and that of branches increases with increasing D, H, CW and CL, while a reverse trend was found for bark and foliage. The root-to-shoot ratio nonlinearly decreased with D, ranging from 1.06 to 0.11. Tree diameter proved to be a good predictor, especially for root biomass. Tree height is more prominent than crown size for improving stem biomass models, yet it puts negative effects on crown biomass models with non-significant coefficients. Crown width could help improve the fitting results of the branch and foliage biomass models. We conclude that the selected generic biomass models for Mongolian oak and Liaodong oak will vigorously promote the accuracy of biomass estimation.


2020 ◽  
Vol 20 (2) ◽  
pp. 253-276
Author(s):  
Julián López-Gómez

AbstractThis paper characterizes whether or not\Sigma_{\infty}\equiv\lim_{\lambda\uparrow\infty}\sigma[\mathcal{P}+\lambda m(% x,t),\mathfrak{B},Q_{T}]is finite, where {m\gneq 0} is T-periodic and {\sigma[\mathcal{P}+\lambda m(x,t),\mathfrak{B},Q_{T}]} stands for the principal eigenvalue of the parabolic operator {\mathcal{P}+\lambda m(x,t)} in {Q_{T}\equiv\Omega\times[0,T]} subject to a general boundary operator of mixed type, {\mathfrak{B}}, on {\partial\Omega\times[0,T]}. Then this result is applied to discuss the nature of the territorial refuges in periodic competitive environments.


2021 ◽  
pp. 1-16
Author(s):  
CAN ZHOU ◽  
NIGEL BROTHERS

Summary The incidental mortality of seabirds in fisheries remains a serious global concern. Obtaining unbiased and accurate estimates of bycatch rates is a priority for seabird bycatch mitigation and demographic research. For measuring the capture risk of seabird interactions in fisheries, the rate of carcass retrieval from hauled gear is commonly used. However, reliability can be limited by a lack of direct capture observations and the substantial pre-haul bycatch losses known to occur, meaning incidence of seabird bycatch is underestimated. To solve this problem, a new measure (bycatch vulnerability) that links an observed interaction directly to the underlying capture event is proposed to represent the capture risk of fishery interactions by seabirds. The new measure is not affected by subsequent bycatch loss. To illustrate how to estimate and analyse bycatch vulnerability, a case study based on a long-term dataset of seabird interactions and capture confirmation is provided. Bayesian modelling and hypothesis testing were conducted to identify important bycatch risk factors. Competition was found to play a central role in determining seabird bycatch vulnerability. More competitive environments were riskier for seabirds, and larger and thus more competitive species were more at risk than smaller sized and less competitive species. Species foraging behaviour also played a role. On the other hand, no additional effect of physical oceanic condition and spatio-temporal factors on bycatch vulnerability was detected. Bycatch vulnerability is recommended as a replacement for the commonly used bycatch rate or carcass retrieval rate to measure the capture risk of an interaction. Combined with a normalized contact rate, bycatch vulnerability offers an unbiased estimate of seabird bycatch rate in pelagic longline fisheries.


2021 ◽  
pp. 216747952199839
Author(s):  
Dustin Hahn

Evolving media landscapes toward increasingly diverse and competitive environments in both traditional and new media requires producers regularly examine the quality of their productions. One growing line of research identifies the increasing presence and significance of statistics in sports media programming. This experiment measures the effect of statistics on enjoyment and perceived credibility by sport consumers while considering level of fanship, media source, and variations in placement within Instagram posts. Results uncover evidence that validates previous observations about statistics in media while contradicting others. Specifically, findings reveal that statistics enhance enjoyment and improve perceived credibility. Observations were consistent across fanship level. However, additional findings also suggest media source and placement of statistics influences both enjoyment and credibility as well. For both dependent variables, statistics in both the Instagram caption and image yielded significantly greater enjoyment and credibility than some other conditions including posts without statistics at all. The impact of these and other findings on sports media industry and scholarship, along with limitations and directions for future research, are discussed.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 234
Author(s):  
Linda Flade ◽  
Christopher Hopkinson ◽  
Laura Chasmer

In this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant components consist of stem, branch, and leaf organs. We found similar ratios of component biomass to total AGB for stems, branches, and leaves amongst shrubs and deciduous tree genera/species across the southern Northwest Territories, while the evergreen Picea genus differed in the biomass allocation to aboveground plant organs compared to the deciduous genera/species. Shrub component AGB allometric models were derived using the three-dimensional variable volume as predictor, determined as the sum of line-intercept cover, upper foliage width, and maximum height above ground. Tree component AGB was modeled using the cross-sectional area of the stem diameter as predictor variable, measured at 0.30 m along the stem length. For shrub component AGB, we achieved better model fits for stem biomass (60.33 g ≤ RMSE ≤ 163.59 g; 0.651 ≤ R2 ≤ 0.885) compared to leaf biomass (12.62 g ≤ RMSE ≤ 35.04 g; 0.380 ≤ R2 ≤ 0.735), as has been reported by others. For short-stature trees, leaf biomass predictions resulted in similar model fits (18.21 g ≤ RMSE ≤ 70.0 g; 0.702 ≤ R2 ≤ 0.882) compared to branch biomass (6.88 g ≤ RMSE ≤ 45.08 g; 0.736 ≤ R2 ≤ 0.923) and only slightly better model fits for stem biomass (30.87 g ≤ RMSE ≤ 11.72 g; 0.887 ≤ R2 ≤ 0.960), which suggests that leaf AGB of short-stature trees (<4.5 m) can be more accurately predicted using cross-sectional area as opposed to diameter at breast height for tall-stature trees. Our multi-species shrub and short-stature tree allometric models showed promising results for predicting plant component AGB, which can be utilized for remote sensing applications where plant functional types cannot always be distinguished. This study provides critical information on plant AGB allocation as well as component AGB modeling, required for understanding boreal AGB and aboveground carbon pools within the dynamic and rapidly changing Taiga Plains and Taiga Shield ecozones. In addition, the structural information and component AGB equations are important for integrating shrubs and short-stature tree AGB into carbon accounting strategies in order to improve our understanding of the rapidly changing boreal ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document