scholarly journals Comparison of deep learning methods for brain age prediction

2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Pradeep Lam ◽  
Alyssa Zhu ◽  
Lauren Salminen ◽  
Sophia I Thomopoulos ◽  
Joanna Bright ◽  
...  
2020 ◽  
Vol 87 (9) ◽  
pp. S374-S375
Author(s):  
Pradeep Lam ◽  
Alyssa Zhu ◽  
Lauren Salminen ◽  
Sophia Thomopoulos ◽  
Neda Jahanshad ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chen-Yuan Kuo ◽  
Tsung-Ming Tai ◽  
Pei-Lin Lee ◽  
Chiu-Wang Tseng ◽  
Chieh-Yu Chen ◽  
...  

Brain age is an imaging-based biomarker with excellent feasibility for characterizing individual brain health and may serve as a single quantitative index for clinical and domain-specific usage. Brain age has been successfully estimated using extensive neuroimaging data from healthy participants with various feature extraction and conventional machine learning (ML) approaches. Recently, several end-to-end deep learning (DL) analytical frameworks have been proposed as alternative approaches to predict individual brain age with higher accuracy. However, the optimal approach to select and assemble appropriate input feature sets for DL analytical frameworks remains to be determined. In the Predictive Analytics Competition 2019, we proposed a hierarchical analytical framework which first used ML algorithms to investigate the potential contribution of different input features for predicting individual brain age. The obtained information then served as a priori knowledge for determining the input feature sets of the final ensemble DL prediction model. Systematic evaluation revealed that ML approaches with multiple concurrent input features, including tissue volume and density, achieved higher prediction accuracy when compared with approaches with a single input feature set [Ridge regression: mean absolute error (MAE) = 4.51 years, R2 = 0.88; support vector regression, MAE = 4.42 years, R2 = 0.88]. Based on this evaluation, a final ensemble DL brain age prediction model integrating multiple feature sets was constructed with reasonable computation capacity and achieved higher prediction accuracy when compared with ML approaches in the training dataset (MAE = 3.77 years; R2 = 0.90). Furthermore, the proposed ensemble DL brain age prediction model also demonstrated sufficient generalizability in the testing dataset (MAE = 3.33 years). In summary, this study provides initial evidence of how-to efficiency for integrating ML and advanced DL approaches into a unified analytical framework for predicting individual brain age with higher accuracy. With the increase in large open multiple-modality neuroimaging datasets, ensemble DL strategies with appropriate input feature sets serve as a candidate approach for predicting individual brain age in the future.


2021 ◽  
Author(s):  
Jeyeon Lee ◽  
Brian Burkett ◽  
Hoon-Ki Min ◽  
Matthew Senjem ◽  
Emily Lundt ◽  
...  

Abstract Normal brain aging is accompanied by patterns of functional and structural change. Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging at respective age ranges. Here, we developed a deep learning-based brain age prediction model using fluorodeoxyglucose (FDG) PET and structural MRI and tested how the brain age gap relates to degenerative cognitive syndromes including mild cognitive impairment, AD, frontotemporal dementia, and Lewy body dementia. Occlusion analysis, performed to facilitate interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap in dementia cohorts was highly correlated with the cognitive impairment and AD biomarker. However, regions generating brain age gaps were different for each diagnosis group of which the AD continuum showed similar patterns to normal aging in the CU.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jin Hong ◽  
Zhangzhi Feng ◽  
Shui-Hua Wang ◽  
Andrew Peet ◽  
Yu-Dong Zhang ◽  
...  

2019 ◽  
Author(s):  
Gidon Levakov ◽  
Gideon Rosenthal ◽  
Ilan Shelef ◽  
Tammy Riklin Raviv ◽  
Galia Avidan

AbstractWe present a Deep Learning framework for the prediction of chronological age from structural MRI scans. Previous findings associate an overestimation of brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in ‘explanation maps’ that were found noisy and unreliable. To address this problem, we developed an inference framework for combining these maps across subjects, thus creating a population-based rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects’ age from raw T1 brain images of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r=0.98. Using the inference method, we revealed that cavities containing CSF, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability contributed the most to the prediction.HighlightsCNNs ensemble is shown to estimate “brain age” from sMRI with an MAE of ∼3.1 yearsA novel framework enables to highlight brain regions contributing to the predictionThis framework results in explanation maps showing consistency with the literatureAs sample size increases, these maps show higher inter-sample replicabilityCSF cavities reflecting general atrophy were found as a prominent aging biomarker


Author(s):  
Han Peng ◽  
Weikang Gong ◽  
Christian F. Beckmann ◽  
Andrea Vedaldi ◽  
Stephen M. Smith

AbstractDeep learning has huge potential for accurate disease prediction with neuroimaging data, but the prediction performance is often limited by training-dataset size and computing memory requirements. To address this, we propose a deep convolutional neural network model, Simple Fully Convolutional Network (SFCN), for accurate prediction of brain age using T1-weighted structural MRI data. Compared with other popular deep network architectures, SFCN has fewer parameters, so is more compatible with small dataset size and 3D volume data. The network architecture was combined with several techniques for boosting performance, including data augmentation, pre-training, model regularization, model ensemble and prediction bias correction. We compared our overall SFCN approach with several widely-used machine learning models. It achieved state-of-the-art performance in UK Biobank data (N = 14,503), with mean absolute error (MAE) = 2.14y in brain age prediction and 99.5% in sex classification. SFCN also won (both parts of) the 2019 Predictive Analysis Challenge for brain age prediction, involving 79 competing teams (N = 2,638, MAE = 2.90y). We describe here the details of our approach, and its optimisation and validation. Our approach can easily be generalised to other tasks using different image modalities, and is released on GitHub.HighlightsA lightweight deep learning model, Simple Fully Convolutional Network (SFCN), is presented, achieving state-of-the-art brain age prediction and sex classification performance in UK Biobank MRI brain imaging data.Even with limited number of training subjects (e.g., 50), SFCN performs better than widely-used regression models.A semi-multimodal ensemble strategy is proposed and achieved first place in the PAC 2019 brain age prediction challenge.Linear regression can remove brain age prediction bias (even on unlabelled data) while maintaining state-of-the-art performance.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document