Free Fatty Acids in Commercial Krill Oils: Concentrations, Compositions, and Implications for Oxidative Stability

2020 ◽  
Vol 97 (8) ◽  
pp. 889-900 ◽  
Author(s):  
Ioan D. Fuller ◽  
Adam H. Cumming ◽  
Asli Card ◽  
Elaine J. Burgess ◽  
Colin J. Barrow ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Rosana Chirinos ◽  
Daniela Zorrilla ◽  
Ana Aguilar-Galvez ◽  
Romina Pedreschi ◽  
David Campos

The effect of roasting ofPlukenetia huayllabambanaseeds on the fatty acids, tocopherols, phytosterols, and phenolic compounds was evaluated. Additionally, the oxidative stability of the seed during roasting was evaluated through free fatty acids, peroxide, andp-anisidine values in the seed oil. Roasting conditions corresponded to 100, 120, 140, and 160°C for 10, 20, and 30 min, respectively. Results indicate that roasting temperatures higher than 120°C significantly affect the content of the studied components. The values of acidity, peroxide, andp-anisidine in the sacha inchi oil from roasted seeds increased during roasting. The treatment of 100°C for 10 min successfully maintained the evaluated bioactive compounds in the seed and quality of the oil, while guaranteeing a higher extraction yield. Our results indicate thatP. huayllabambanaseed should be roasted at temperatures not higher than 100°C for 10 min to obtain snacks with high levels of bioactive compounds and with high oxidative stability.


2020 ◽  
Vol 71 (3) ◽  
pp. 367
Author(s):  
A. Al-Farga ◽  
M. Baeshen ◽  
F. M. Aqlan ◽  
A. Siddeeg ◽  
M. Afifi ◽  
...  

This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2311 ◽  
Author(s):  
Francesca Bennato ◽  
Denise Innosa ◽  
Andrea Ianni ◽  
Camillo Martino ◽  
Lisa Grotta ◽  
...  

The aim of this study was to evaluate the development of volatile compounds in yogurt samples obtained from goats fed a dietary supplementation with olive leaves (OL). For this purpose, thirty Saanen goats were divided into two homogeneous groups of 15 goats each: a control group that received a standard diet (CG) and an experimental group whose diet was supplemented with olive leaves (OLG). The trial lasted 28 days, at the end of which the milk of each group was collected and used for yogurt production. Immediately after production, and after 7 days of storage at 4 °C in the absence of light, the yogurt samples were characterized in terms of fatty acid profile, oxidative stability and volatile compounds by the solid-phase microextraction (SPME)–GC/MS technique. Dietary OL supplementation positively affected the fatty acid composition, inducing a significant increase in the relative proportion of unsaturated fatty acids, mainly oleic acid (C18:1 cis9) and linolenic acid (C18:3). With regard to the volatile profile, both in fresh and yogurt samples stored for 7 days, the OL supplementation induced an increase in free fatty acids, probably due to an increase in lipolysis carried out by microbial and endogenous milk enzymes. Specifically, the largest variations were found for C6, C7, C8 and C10 free fatty acids. In the same samples, a significant decrease in aldehydes, mainly heptanal and nonanal, was also detected, supporting—at least in part—an improvement in the oxidative stability. Moreover, alcohols, esters and ketones appeared lower in OLG samples, while no significant variations were observed for lactones. These findings suggest the positive role of dietary OL supplementation in the production of goats’ milk yogurt, with characteristics potentially indicative of an improvement in nutritional properties and flavor.


2013 ◽  
Vol 115 (9) ◽  
pp. 1013-1020 ◽  
Author(s):  
Jianhua Yi ◽  
Zhenbao Zhu ◽  
Wenbin Dong ◽  
David Julian McClements ◽  
Eric Andrew Decker

1965 ◽  
Vol 48 (4) ◽  
pp. 609-618 ◽  
Author(s):  
H. K. Dyster-Aas ◽  
C. E. T. Krakau

ABSTRACT In addition to the previously described permeability disturbance in the blood aqueous barrier of the eye, measured as an increase of the aqueous flare, a series of transitory systemic effects have been recorded following the subcutaneous injection of synthetic α-MSH: marked increase of the free fatty acids in plasma, decrease in the serum calcium level, decrease in the blood pressure, increase in the skin temperature, increased frequency and diminished amplitude of respiration, presence of slow waves in the EEG. There is a correlation between the magnitude of the aqueous flare increase and the increase of free fatty acids in plasma and also between the aqueous flare and the minimum serum calcium level.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1812-P
Author(s):  
MARIA D. HURTADO ◽  
J.D. ADAMS ◽  
MARCELLO C. LAURENTI ◽  
CHIARA DALLA MAN ◽  
CLAUDIO COBELLI ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1010-P
Author(s):  
VICTORIA E. PARKER ◽  
DARREN ROBERTSON ◽  
TAO WANG ◽  
DAVID C. HORNIGOLD ◽  
MAXIMILIAN G. POSCH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document