Graft polymerization of acrylic acid onto polyethylene film by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and film thickness

1982 ◽  
Vol 27 (3) ◽  
pp. 1033-1041 ◽  
Author(s):  
Isao Ishigaki ◽  
Takanobu Sugo ◽  
Keiji Senoo ◽  
Toshio Okada ◽  
Jiro Okamoto ◽  
...  
2011 ◽  
Vol 197-198 ◽  
pp. 899-905 ◽  
Author(s):  
Chun Xiang Lin ◽  
Ming Hua Liu ◽  
Huai Yu Zhan

The spherical cellulose adsorbent was prepared by grafting acrylic acid onto the spherical cellulose beads prepared by NMMO method. The effecting factors, e.g., monomer concentration, initiator concentration, reaction temperature and reaction time were optimized by the orthogonal and signal-factor experiments and the structure of the adsorbent was characterized by FTIR and SEM. The graft mechanism was also discussed. Moreover, the spherical cellulose adsorbents were shown to behave as good sorbents for basic amino acids L-Arg, L-Lys and L-His.


2012 ◽  
Vol 581-582 ◽  
pp. 301-304
Author(s):  
Ke Hong Zhang ◽  
Hui Xiao ◽  
Jun Juan Du

Modified MPS-SiO2 particle was obtained by the bonding of 3-methacryloxypropyl trimethoxysilane (KH-570) on the surface of silica gel particle. The methacrylic acid (MMA) monomers were grafted on the surface of MPS-SiO2 particle to prepare the grafting particles SiO2-g-PMAA. The effects of reaction conditions on the graft degree were explored. The results indicate that the MMA monomers can be easily grafted on the surface of silica gel particle by using the method of graft polymerization. During the graft polymerization, the grafted polymer layer is a hindrance to the subsequent graft polymerization. Then the grafting degree of the polymer under a certain condition has a limiting value. The reaction conditions, such as monomer concentration, the amount of initiator, reaction temperature, have remarkably influence on the graft polymerization of SiO2-g-PMAA.


2016 ◽  
Vol 14 (1) ◽  
pp. 206-214 ◽  
Author(s):  
Beata A. Butruk-Raszeja ◽  
Paulina A. Trzaskowska ◽  
Aleksandra Kuźminska ◽  
Tomasz Ciach

AbstractThis paper presents a method for polyurethane surface functionalization for tissue engineering applications. Functionalization has been carried out by grafting acrylic acid to the polyurethane surface with the use of radical polymerization with a Ce4+ initiator. Contrary to other papers suggesting that the presence of hydroxyl groups are essential for successful grafting via ceric ions, we propose a method with the omission of the surface hydroxylation step. The influence of reaction conditions: reaction time, reaction temperature and monomer concentration on carboxyl groups surface density has been analyzed and described. The quantity of carboxyl groups on the surface was determined with the use of the TBO method. Materials grafted with acrylic acid have been subjected to conjugation with a peptide using sulfoNHS/ EDC chemistry. Successful incorporation of the peptide has been confirmed by an ELISA assay. Additionally, for better characterization, after each step of modification materials were subjected to SEM, FTIR-ATR, XPS and contact angle measurement analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Liu ◽  
Chun Lv

AbstractUsing potassium peroxodisulfate as an initiator and acrylic acid as a monomer, an acrylic acid oligomer was synthesized and then compounded with magnesium salt to form a non-silicone oxygen bleaching stabilizer. By investigating the effects of reaction temperature, reaction time, initiator concentration, monomer concentration, and magnesium salt dosage on product performance, the effect of stabilizers on linen yarn bleaching was analyzed. The synthetic conditions of oxygen bleaching stabilizer were determined by orthogonal test method, namely, acrylic acid monomer concentration 25%, initiator dosage 5%, oligomeric acrylic acid and magnesium salt compound ratio 5:1, reaction temperature 65 °C, reaction time 4 h. At this time, the chelated iron value of the product was as high as 239.314 mg/g, and the chelated calcium value also reached 145.000 mg/g. The dosage of the synthesized stabilizer were determined to be 4 g/L through indicators such as the decomposition rate of hydrogen peroxide and whiteness. The results showed that the environmentally friendly non-silicone oxygen bleaching stabilizer not only had a good ability to inhibit the decomposition of hydrogen peroxide, but also provided bleached linen yarn with a superior degree of whiteness and less metal ion residue, which can effectively solve the “silicon scale” problem and improve the quality of the pre-treatmented products.


2018 ◽  
Vol 54 (1A) ◽  
pp. 245
Author(s):  
Hoang Thu Ha

The graft polymerization of lauryl methacrylate (LMA) onto polypropylene fiber (PP) was investigated by using 2,2’-azobisisobutyronitrile (AIBN) as initiator. The grafting was influenced by AIBN concentration, monomer concentration, the reaction time and reaction temperature. On the basis of a detailed investigation of these factor, the optimal conditions for the grafting of LMA onto PP with the said initiator were as follows: [AIBN] = 0.015 mol/l, [LMA] = 1.25 mol/l, reaction time 240 min, reaction temperature 80 oC, in which the graft yield (%GY) of 15.7 % was obtained. Characterization of the polypropylene fiber-graft-lauryl methacrylate was done by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2028
Author(s):  
Shin-ichi Sawada ◽  
Yasunari Maekawa

We prepared novel bipolar membranes (BPMs) consisting of cation and anion exchange layers (CEL and AEL) using radiation-induced asymmetric graft polymerization (RIAGP). In this technique, graft polymers containing cation and anion exchange groups were introduced into a base film from each side. To create a clear CEL/AEL boundary, grafting reactions were performed from each surface side using two graft monomer solutions, which are immiscible in each other. Sodium p-styrenesulfonate (SSS) and acrylic acid (AA) in water were co-grafted from one side of the base ethylene-co-tetrafluoroethylene film, and chloromethyl styrene (CMS) in xylene was simultaneously grafted from the other side, and then the CMS units were quaternized to afford a BPM. The distinct SSS + AA- and CMS-grafted layers were formed owing to the immiscibility of hydrophilic SSS + AA and hydrophobic CMS monomer solutions. This is the first BPM with a clear CEL/AEL boundary prepared by RIAGP. However, in this BPM, the CEL was considerably thinner than the AEL, which may be a problem in practical applications. Then, by using different starting times of the first SSS+AA and second CMS grafting reactions, the CEL and AEL thicknesses was found to be controlled in RIAGP.


Sign in / Sign up

Export Citation Format

Share Document